Some problems of nonparametric estimation by observations of ergodic diffusion process

被引:17
|
作者
Kutoyants, YA [1 ]
机构
[1] UNIV MAINE,LAB STAT & PROC,F-72017 LE MANS,FRANCE
关键词
diffusion process; nonparametric estimation; density estimation; distribution function estimation; minimax bound;
D O I
10.1016/S0167-7152(96)00088-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problems of the density and distribution function estimation by the observations of diffusion process with ergodic properties. In every problem we first propose a minimax bound on the risk of any estimator and then study the asymptotic behavior of several estimators. It is shown that the empiric distribution function is asymptotically normal and asymptotically efficient (in the minimax sense) estimator of the distribution function. In the density estimation problem, we describe the asymptotic behavior of a kernel-type estimator and one another (unbiased) estimator. Both of them are root T-consistent, asymptotically normal and asymptotically efficient.
引用
收藏
页码:311 / 320
页数:10
相关论文
共 50 条