Different types of chaos synchronization in two coupled piecewise linear maps

被引:47
|
作者
Maistrenko, Y [1 ]
Kapitaniak, T [1 ]
机构
[1] TECH UNIV LODZ, DIV DYNAM, PL-90924 LODZ, POLAND
关键词
D O I
10.1103/PhysRevE.54.3285
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dynamics of a four-parameter family of two-dimensional piecewise linear endomorphisms which consist of two linearly coupled one-dimensional maps is considered. We show that under analytically given conditions chaotic behavior in both maps can be synchronized. Depending on the coupling the parameters chaotic attractor's synchronized state is characterized by different types of stability.
引用
收藏
页码:3285 / 3292
页数:8
相关论文
共 50 条
  • [1] Finite-time global chaos synchronization for piecewise linear maps
    Millerioux, G
    Mira, C
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (01) : 111 - 116
  • [2] Chaos synchronization in a lattice of piecewise linear maps with regular and random couplings
    dos Santos, A. M.
    Viana, R. L.
    Lopes, S. R.
    Pinto, S. E. de S.
    Batista, A. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 367 : 145 - 157
  • [3] Noninvertible piecewise linear maps applied to chaos synchronization and secure communications
    Millerioux, G
    Mira, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (07): : 1617 - 1634
  • [4] Riddling and chaotic synchronization of coupled piecewise-linear Lorenz maps
    Verges, M. C.
    Pereira, R. F.
    Lopes, S. R.
    Viana, R. L.
    Kapitaniak, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (12) : 2515 - 2525
  • [5] Piecewise linear maps with heterogeneous chaos
    Saiki, Yoshitaka
    Takahasi, Hiroki
    Yorke, James A.
    NONLINEARITY, 2021, 34 (08) : 5744 - 5761
  • [6] Synchronization of coupled uniform piecewise linear three-dimensional Markov maps
    Hasler, M
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1045 - 1048
  • [7] TOPOLOGICAL ENTROPY IN THE SYNCHRONIZATION OF PIECEWISE LINEAR AND MONOTONE MAPS. COUPLED DUFFING OSCILLATORS
    Caneco, Acilina
    Rocha, J. Leonel
    Gracio, Clara
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (11): : 3855 - 3868
  • [8] Chaos synchronization and riddled basins in two coupled one-dimensional maps
    Kapitaniak, T
    Maistrenko, YL
    CHAOS SOLITONS & FRACTALS, 1998, 9 (1-2) : 271 - 282
  • [9] ORDER AND CHAOS FOR A CLASS OF PIECEWISE-LINEAR MAPS
    LOPEZ, VJ
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (05): : 1379 - 1394
  • [10] Riddling bifurcations in coupled piecewise linear maps
    Kapitaniak, T
    Maistrenko, Y
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 126 (1-2) : 18 - 26