Analyzing an M|M| N Queueing System with Feedback by the Method of Asymptotic Analysis

被引:4
|
作者
Nazarov, A. [1 ]
Melikov, A. [2 ]
Pavlova, E. [1 ]
Aliyeva, S. [3 ]
Ponomarenko, L. [4 ,5 ]
机构
[1] Natl Res Tomsk State Univ, Tomsk, Russia
[2] Azerbaijan Natl Acad Sci, Inst Control Syst, Baku, Azerbaijan
[3] Baku State Univ, Baku, Azerbaijan
[4] Natl Acad Sci Ukraine, Int Res & Training Ctr Informat Technol & Syst, Kiev, Ukraine
[5] Minist Educ & Sci Ukraine, Kiev, Ukraine
关键词
multi-server queueing system; instant feedback; delayed feedback; orbit; asymptotic; analysis method;
D O I
10.1007/s10559-021-00329-x
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper, we consider a mathematical model for repeated customers in the form of a queuing system with N servers, instant and delayed feedback, and an orbit. It is believed that the orbit size for repeated customers is infinite. The input flow is Poisson. To find the joint probability distribution of the number of occupied servers in the system and the number of customers in the orbit, the asymptotic analysis method is used. The results of a numerical experiment are presented.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 50 条
  • [1] Analyzing an M|M| N Queueing System with Feedback by the Method of Asymptotic Analysis
    A. Nazarov
    A. Melikov
    E. Pavlova
    S. Aliyeva
    L. Ponomarenko
    Cybernetics and Systems Analysis, 2021, 57 : 57 - 65
  • [2] Asymptotical analysis of queueing system MMPP|M|N with feedback
    Nazarov, Anatoly A.
    Pavlova, Ekaterina A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2022, (58): : 47 - 57
  • [3] Asymptotic Analysis of an Retrial Queueing System M|M|1 with Collisions and Impatient Calls
    Danilyuk, E. Yu.
    Fedorova, E. A.
    Moiseeva, S. P.
    AUTOMATION AND REMOTE CONTROL, 2018, 79 (12) : 2136 - 2146
  • [4] Asymptotic Analysis of an Retrial Queueing System M|M|1 with Collisions and Impatient Calls
    E. Yu. Danilyuk
    E. A. Fedorova
    S. P. Moiseeva
    Automation and Remote Control, 2018, 79 : 2136 - 2146
  • [5] Analysis of Queueing System MMPP/M/K/K with Delayed Feedback
    Melikov, Agassi
    Aliyeva, Sevinj
    Sztrik, Janos
    MATHEMATICS, 2019, 7 (11)
  • [6] Analysis of M/G/1 queueing system with fixed times of feedback
    Zhang, QZ
    Liao, JX
    Performance Challenges for Efficient Next Generation Networks, Vols 6A-6C, 2005, 6A-6C : 2071 - 2080
  • [7] Asymptotic Analysis of Retrial Queueing System M/M/1 with Impatient Customers, Collisions and Unreliable Server
    Danilyuk, Elena Yu
    Moiseeva, Svetlana P.
    Sztrik, Janos
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (02): : 218 - 230
  • [8] ASYMPTOTIC WAITING TIME ANALYSIS OF A FINITE-SOURCE M/M/1 RETRIAL QUEUEING SYSTEM
    Sudyko, E.
    Nazarov, A. A.
    Sztrik, J.
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2019, 33 (03) : 387 - 403
  • [9] Continuity theorems for the M/M/1/n queueing system
    Vyacheslav M. Abramov
    Queueing Systems, 2008, 59 : 63 - 86
  • [10] Continuity theorems for the M/M/1/n queueing system
    Abramov, Vyacheslav M.
    QUEUEING SYSTEMS, 2008, 59 (01) : 63 - 86