Exact joint laws associated with spectrally negative L,vy processes and applications to insurance risk theory

被引:55
|
作者
Yin, Chuancun [1 ]
Yuen, Kam C. [2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Fluctuation identity; spectrally negative Levy processes; suprema and infima; generalized Dickson's formula; scale function; occupation time; LEVY PROCESSES;
D O I
10.1007/s11464-013-0186-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the spectrally negative L,vy processes and determine the joint laws for the quantities such as the first and last passage times over a fixed level, the overshoots and undershoots at first passage, the minimum, the maximum, and the duration of negative values. We apply our results to insurance risk theory to find an explicit expression for the generalized expected discounted penalty function in terms of scale functions. Furthermore, a new expression for the generalized Dickson's formula is provided.
引用
收藏
页码:1453 / 1471
页数:19
相关论文
共 38 条
  • [1] Exact joint laws associated with spectrally negative Lévy processes and applications to insurance risk theory
    Chuancun Yin
    Kam C. Yuen
    Frontiers of Mathematics in China, 2014, 9 : 1453 - 1471
  • [2] Local Times for Spectrally Negative Lévy Processes
    Bo Li
    Xiaowen Zhou
    Potential Analysis, 2020, 52 : 689 - 711
  • [3] Spectrally negative Levy processes with applications in risk theory
    Yang, HL
    Zhang, LZ
    ADVANCES IN APPLIED PROBABILITY, 2001, 33 (01) : 281 - 291
  • [4] Maximal displacement of spectrally negative branching Lévy processes
    Profeta, Christophe
    BERNOULLI, 2024, 30 (02) : 961 - 982
  • [5] Generalized scale functions for spectrally negative L?vy processes
    Contreras, Jesus
    Rivero, Victor
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 : 645 - 663
  • [6] Smoothness of scale functions for spectrally negative L,vy processes
    Chan, T.
    Kyprianou, A. E.
    Savov, M.
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (3-4) : 691 - 708
  • [7] Smoothness of scale functions for spectrally negative Lévy processes
    T. Chan
    A. E. Kyprianou
    M. Savov
    Probability Theory and Related Fields, 2011, 150 : 691 - 708
  • [8] Ray Knight theorems for spectrally negative Lévy processes
    Rivero, Victor
    Contreras, Jesus
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [9] On an Explicit Skorokhod Embedding for Spectrally Negative L,vy Processes
    Obloj, Jan
    Pistorius, Martijn
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (02) : 418 - 440
  • [10] On an Explicit Skorokhod Embedding for Spectrally Negative Lévy Processes
    Jan Obłój
    Martijn Pistorius
    Journal of Theoretical Probability, 2009, 22 : 418 - 440