Weak bimonoids in duoidal categories

被引:2
|
作者
Chen, Yuanyuan [1 ]
Boehm, Gabriella [2 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Jiangsu, Peoples R China
[2] Wigner Res Ctr Phys, H-1525 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
MONOIDAL CATEGORIES; HOPF-ALGEBRAS; FUNCTORS; MONADS;
D O I
10.1016/j.jpaa.2014.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weak bimonoids in duoidal categories are introduced. They provide a common generalization of bimonoids in duoidal categories and of weak bimonoids in braided monoidal categories. Under the assumption that idempotent morphisms in the base category split, they are shown to induce weak bimonads (in four symmetric ways). As a consequence, they have four separable Frobenius base (co)monoids, two in each of the underlying monoidal categories. Hopf modules over weak bimonoids are defined by weakly lifting the induced comonad to the Eilenberg-Moore category of the induced monad. Making appropriate assumptions on the duoidal category in question, the fundamental theorem of Hopf modules is proven which says that the category of modules over one of the base monoids is equivalent to the category of Hopf modules if and only if a Galois-type comonad morphism is an isomorphism. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2240 / 2273
页数:34
相关论文
共 50 条
  • [1] (Hopf) Bimonoids in Duoidal Categories
    Bohm, Gabriella
    HOPF ALGEBRAS AND THEIR GENERALIZATIONS FROM A CATEGORY THEORETICAL POINT OF VIEW, 2018, 2226 : 99 - 123
  • [2] On duoidal ∞-categories
    Torii, Takeshi
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2025, 20 (01) : 125 - 162
  • [3] On Hopf monoids in duoidal categories
    Boehm, Gabriella
    Chen, Yuanyuan
    Zhang, Liangyun
    JOURNAL OF ALGEBRA, 2013, 394 : 139 - 172
  • [4] On categories of monoids, comonoids, and bimonoids
    Porst, Hans-E.
    QUAESTIONES MATHEMATICAE, 2008, 31 (02) : 127 - 139
  • [5] Weak Multiplier Bimonoids
    Bohm, Gabriella
    Gomez-Torrecillas, Jose
    Lack, Stephen
    APPLIED CATEGORICAL STRUCTURES, 2018, 26 (01) : 47 - 111
  • [6] Weak Multiplier Bimonoids
    Gabriella Böhm
    José Gómez-Torrecillas
    Stephen Lack
    Applied Categorical Structures, 2018, 26 : 47 - 111
  • [7] TANNAKA DUALITY AND CONVOLUTION FOR DUOIDAL CATEGORIES
    Booker, Thomas
    Street, Ross
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 166 - 205
  • [8] Operadic categories and duoidal Deligne's conjecture
    Batanin, Michael
    Markl, Martin
    ADVANCES IN MATHEMATICS, 2015, 285 : 1630 - 1687
  • [9] A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories
    Lack, Stephen
    Street, Ross
    APPLIED CATEGORICAL STRUCTURES, 2014, 22 (5-6) : 789 - 803
  • [10] A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories
    Stephen Lack
    Ross Street
    Applied Categorical Structures, 2014, 22 : 789 - 803