G-structure on the cohomology of Hopf algebras

被引:17
|
作者
Farinati, MA [1 ]
Solotar, AL [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
Gerstenhaber algebras; Hopf algebras; Hochschild cohomology;
D O I
10.1090/S0002-9939-04-07274-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that Ext(A)(circle)(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H-GS(circle)(H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H-GS(circle)(H, H) congruent to Ext(A)(circle)(k, k) as a Gerstenhaber subalgebra of H-circle(A, A) (the Hochschild cohomology of A).
引用
收藏
页码:2859 / 2865
页数:7
相关论文
共 50 条