Using machine learning to allocate parallel workload

被引:0
|
作者
Long, Shun [1 ]
机构
[1] JiNan Univ, Dept Comp Sci, Guangzhou 510632, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is believed that optimal workload allocation cannot be achieved without considering the cost of parallelism in a given environment. This paper presents a machine learning approach to allocate parallel workload in a cost-aware manner. This instance-based learning approach uses static program features to classify programs, before deciding the best workload allocation scheme based on its prior experience with similar programs. Experimental results on 76 Java benchmarks show that it can find the optimal workload allocation schemes for 36 out of them and over 85% of the best speedups on the other 19. It shows that this approach can efficiently allocate parallel workload among Java threads and achieve optimal or suboptimal performance.
引用
收藏
页码:393 / 396
页数:4
相关论文
共 50 条
  • [1] Automated Workload Management Using Machine Learning
    Deivanai, K.
    Vijayakumar, V.
    Priyanka
    DATA SCIENCE AND BIG DATA ANALYTICS, 2019, 16 : 365 - 378
  • [2] Personalized workload management in badminton using a machine learning model
    Musa, Rabiu Muazu
    Majeed, Anwar P. P. Abdul
    Maliki, Ahmad Bisyri Husin Musawi
    Kosni, Norlaila Azura
    INTERNATIONAL JOURNAL OF SPORTS SCIENCE & COACHING, 2025,
  • [3] Reducing Workload in Short Answer Grading Using Machine Learning
    Weegar, Rebecka
    Idestam-Almquist, Peter
    INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, 2024, 34 (02) : 247 - 273
  • [4] Blood Biomarkers Predict Cardiac Workload Using Machine Learning
    Shou, Lan
    Huang, Wendy Wenyu
    Barszczyk, Andrew
    Wu, Si Jia
    Han, Helen
    Waese-Perlman, Alex
    Chen, Lulu
    Wei, Jing
    Luo, Hong
    Lee, Kang
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [5] A cost-aware parallel workload allocation approach based on machine learning techniques
    Long, Shun
    Fursin, Grigori
    Franke, Bjoern
    NETWORK AND PARALLEL COMPUTING, PROCEEDINGS, 2007, 4672 : 506 - +
  • [6] A cost-aware parallel workload allocation approach based on machine learning techniques
    Department of Computer Science, Jinan University, Guangzhou 510632, China
    不详
    不详
    Lect. Notes Comput. Sci., (506-515):
  • [7] Workload balancing in identical parallel machine scheduling using a mathematical programming method
    Yassine Ouazene
    Farouk Yalaoui
    Hicham Chehade
    Alice Yalaoui
    International Journal of Computational Intelligence Systems, 2014, 7 : 58 - 67
  • [8] Workload balancing in identical parallel machine scheduling using a mathematical programming method
    Ouazene, Yassine
    Yalaoui, Farouk
    Chehade, Hicham
    Yalaoui, Alice
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2014, 7 : 58 - 67
  • [9] Reproducible machine learning research in mental workload classification using EEG
    Demirezen, Guliz
    Temizel, Tugba Taskaya
    Brouwer, Anne-Marie
    FRONTIERS IN NEUROERGONOMICS, 2024, 5
  • [10] Workload-Aware DRAM Error Prediction using Machine Learning
    Mukhanov, Lev
    Tovletoglou, Konstantinos
    Vandierendonck, Hans
    Nikolopoulos, Dimitrios S.
    Karakonstantis, Georgios
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC 2019), 2019, : 106 - 118