Compact moduli of plane curves

被引:57
|
作者
Hacking, P [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1215/S0012-7094-04-12421-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a compactification M-d of the moduli space of lane curves of degree d. We regard-a plane curve C subset of P-2 as a surface-divisor pair (P-2, C), and we define Ad as a moduli space of pairs (X, D), where X is a degeneration of the plane. We show that, if d is not divisible by 3, the stack M-d is smooth and the degenerate surfaces X can be described explicitly.
引用
收藏
页码:213 / 257
页数:45
相关论文
共 50 条
  • [1] Moduli of tropical plane curves
    Sarah Brodsky
    Michael Joswig
    Ralph Morrison
    Bernd Sturmfels
    Research in the Mathematical Sciences, 2
  • [2] Moduli of tropical plane curves
    Brodsky, Sarah
    Joswig, Michael
    Morrison, Ralph
    Sturmfels, Bernd
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2015, 2 (01)
  • [3] The κ ring of the moduli of curves of compact type
    Pandharipande, Rahul
    ACTA MATHEMATICA, 2012, 208 (02) : 335 - 388
  • [4] MODULI SPACE OF PLANE CURVES SINGULARITIES
    DELORME, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 279 (10): : 367 - 369
  • [5] MODULI OF ALGEBROID PLANE-CURVES
    CASAS, E
    LECTURE NOTES IN MATHEMATICS, 1982, 961 : 32 - 83
  • [6] Conformal field theories and compact curves in moduli spaces
    Donagi, Ron
    Morrison, David R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [7] Conformal field theories and compact curves in moduli spaces
    Ron Donagi
    David R. Morrison
    Journal of High Energy Physics, 2018
  • [8] THE RATIONALITY OF SOME MODULI SPACES OF PLANE-CURVES
    SHEPHERDBARRON, NI
    COMPOSITIO MATHEMATICA, 1988, 67 (01) : 51 - 88
  • [9] Rationality of Moduli Spaces of Plane Curves of Small Degree
    Boehning, Christian
    von Bothmer, Hans-Christian Graf
    Kroeker, Jakob
    EXPERIMENTAL MATHEMATICS, 2009, 18 (04) : 499 - 508
  • [10] A moduli space of non-compact curves on a complex surface
    Shevchishin, Vsevolod V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (11) : 1527 - 1548