An optical Hamiltonian and obstructions to integrability

被引:3
|
作者
Butler, Leo T. [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
D O I
10.1088/0951-7715/19/9/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If the geodesic flow of a compact Finslerian 3-manifold is completely integrable, and its singular set is a tame polyhedron, then the manifold's pi(1) is almost solvable ( Butler 2005 Topology 44 769-89). Is this true for non-commutatively integrable geodesic flows? This paper constructs non-commutatively integrable optical Hamiltonians on the unit-sphere bundle of homogeneous spaces of PSL2R that have a real-analytic singular set. These flows are not tangential to a Lagrangian foliation with a tame singular set.
引用
收藏
页码:2123 / 2135
页数:13
相关论文
共 50 条