analysis of variance;
between clusters;
mixed models;
pure error;
regression analysis;
regression diagnostics;
replication;
variance components;
within clusters;
D O I:
10.2307/2965565
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We propose using an existing set of statistical teals in a new way that allows one to test the independence assumption in standard normal theory linear models. The set of tools is near-replicate lack-of-fit tests. The classical lack-of-fit test requires a linear model in which some rows of the model matrix are repeated. Near-replicate lack-of-fit tests were developed to mimic the behavior of the classical test by identifying clusters of rows in the design matrix that are similar, though not necessarily exact replications. We argue that meaningful clusters can be formed more generally by constructing rational subgroups of data collected under similar circumstances. As such. observations in the same subgroup may be more highly correlated than observations in different subgroups. Ne investigate the behavior of these tests when used to identify lack of independence.
机构:
Harvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
Harvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USAHarvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
Duan, Rui
Liang, C. Jason
论文数: 0引用数: 0
h-index: 0
机构:
NIAID, Rockville, MD USAHarvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
Liang, C. Jason
Shaw, Pamela A.
论文数: 0引用数: 0
h-index: 0
机构:
Kaiser Permanente Washington Hlth Res Inst, Seattle, WA USA
Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA USAHarvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
Shaw, Pamela A.
Tang, Cheng Yong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA USAHarvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
Tang, Cheng Yong
Chen, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Temple Univ, Dept Stat Operat & Data Sci, Philadelphia, PA USA
Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USAHarvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA