A no-go theorem for Poincare-invariant networks

被引:1
|
作者
Hossenfelder, Sabine [1 ,2 ]
机构
[1] KTH Royal Inst Technol, NORDITA, SE-10691 Stockholm, Sweden
[2] Stockholm Univ, SE-10691 Stockholm, Sweden
关键词
Lorentz-invariance; networks; discretization; CAUSAL SET; SPACE-TIME;
D O I
10.1088/0264-9381/32/20/207001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
I explain why there are no Poincare-invariant networks with a locally finite distribution of nodes and links in Minkowski-spacetime of any dimension.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] POINCARE-INVARIANT LEE MODEL
    FUDA, MG
    PHYSICAL REVIEW D, 1990, 41 (02): : 534 - 549
  • [2] New nonlinear Poincare-invariant equations
    Yehorchenko, I
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 1022 - 1026
  • [3] POINCARE-INVARIANT EQUATIONS OF MOTION FOR CLASSICAL PARTICLES
    CURRIE, DG
    PHYSICAL REVIEW, 1966, 142 (04): : 817 - &
  • [4] NO-GO THEOREM
    GRODSKY, IT
    STREATER, RF
    PHYSICAL REVIEW LETTERS, 1968, 20 (13) : 695 - &
  • [5] Generalized relativistic kinematics in Poincare-invariant models
    Ivetic, B.
    Mignemi, S.
    Samsarov, A.
    PHYSICAL REVIEW D, 2016, 94 (06)
  • [6] THERMOFIELD DYNAMICS FOR TWISTED POINCARE-INVARIANT FIELD THEORIES: WICK THEOREM AND S-MATRIX
    Leineker, Marcelo
    Queiroz, Amilcar R.
    Santana, Ademir E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (15): : 2569 - 2589
  • [7] On realizations of Lie algebras of Poincare groups and new Poincare-invariant equations
    Lahno, Viktor
    GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 110 - 119
  • [8] Semileptonic decays of mesons in Poincare-invariant potential model
    Krutov, A. F.
    Lisienkova, M. V.
    Troitsky, V. E.
    INTERNATIONAL WORKSHOP ON QUANTUM OPTICS 2007, 2008, 7024
  • [9] Constituent quark masses in Poincare-invariant quantum mechanics
    Andreev, Viktor
    Haurysh, Vadzim
    XVII WORKSHOP ON HIGH ENERGY SPIN PHYSICS (DSPIN-2017), 2018, 938
  • [10] A No-Go Theorem for One-Layer Feedforward Networks
    Giusti, Chad
    Itskov, Vladimir
    NEURAL COMPUTATION, 2014, 26 (11) : 2527 - 2540