Structure of weakly one-sided duo Ore extensions

被引:1
|
作者
Hong, Chan Yong [1 ]
Kim, Hong Kee [2 ]
Kim, Nam Kyun [3 ]
Kwak, Tai Keun [4 ]
Lee, Yang [5 ,6 ]
机构
[1] Kyung Hee Univ, Dept Math, Seoul 02447, South Korea
[2] Gyeongsang Natl Univ, Dept Math, Jinju 52828, South Korea
[3] Hanbat Natl Univ, Sch Basic Sci, Daejeon 34158, South Korea
[4] Daejin Univ, Dept Math, Pochon 11159, South Korea
[5] Yanbian Univ, Dept Math, Yanji 133002, Peoples R China
[6] Daejin Univ, Inst Basic Sci, Pochon 11159, South Korea
关键词
Weakly left (right) duo ring; skew polynomial ring; ore extension; rigid endomorphism; commutative ring; radical; 16D25; 16S36; 16U80;
D O I
10.1007/s12044-020-00600-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Marks (J. Algebra280 (2004) 463-471) proved that if the skew polynomial ring R[x;sigma] is left or right duo, then R[x;sigma] is commutative. It is proved that if R[x;sigma] is weakly left (resp., right) duo over a reduced ring R with an endomorphism (resp., a monomorphism) sigma, then R[x;sigma] is commutative. This concludes that a noncommutative skew polynomial ring is not weakly left duo when the base ring is reduced. It is also shown that if R[x;sigma] is weakly left duo then the polynomial ring R[x] is weakly left duo. We next study the structure of the Ore extension R[x;sigma,delta] when it is weakly left or right duo.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Structure of weakly one-sided duo Ore extensions
    Chan Yong Hong
    Hong Kee Kim
    Nam Kyun Kim
    Tai Keun Kwak
    Yang Lee
    Proceedings - Mathematical Sciences, 2021, 131
  • [2] One-sided duo property on nilpotents
    Kwak, Tai Keun
    Hong, Chan Yong
    Kim, Hong Kee
    Kim, Nam Kyun
    Lee, Yang
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (06): : 1974 - 1987
  • [3] WEAKLY PRIME ONE-SIDED IDEALS
    VANDERWALT, APJ
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1985, 38 (FEB): : 84 - 91
  • [4] Duo rings and Ore extensions
    Marks, G
    JOURNAL OF ALGEBRA, 2004, 280 (02) : 463 - 471
  • [5] Structure of principal one-sided ideals
    East, James
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (06) : 1093 - 1145
  • [6] Linear one-sided stability of MAT for weakly injective domain
    Choi, SW
    Seidel, HP
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2002, 17 (03) : 237 - 247
  • [7] Linear One-Sided Stability of MAT for Weakly Injective Domain
    Sung Woo Choi
    Hans-Peter Seidel
    Journal of Mathematical Imaging and Vision, 2002, 17 : 237 - 247
  • [8] Ore extensions over duo rings
    Matczuk, J
    JOURNAL OF ALGEBRA, 2006, 297 (01) : 139 - 154
  • [9] ONE-SIDED
    WILSON, PE
    PHI DELTA KAPPAN, 1983, 64 (10) : 732 - &
  • [10] 'ONE-SIDED'
    HOFFMAN, B
    MINNESOTA REVIEW, 1991, (36) : 29 - 29