Woodward-Hoffmann rules in density functional theory: Initial hardness response

被引:69
|
作者
De Proft, Frank
Ayers, Paul W.
Fias, Stijn
Geerlings, Paul
机构
[1] Free Univ Brussels, Eenheid Algemene Chem, Fac Wetenschappen, B-1050 Brussels, Belgium
[2] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
来源
JOURNAL OF CHEMICAL PHYSICS | 2006年 / 125卷 / 21期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1063/1.2387953
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Woodward-Hoffmann rules for pericyclic reactions, a fundamental set of reactivity rules in organic chemistry, are formulated in the language of conceptual density functional theory (DFT). DFT provides an elegant framework to introduce chemical concepts and principles in a quantitative manner, partly because it is formulated without explicit reference to a wave function, on whose symmetry properties the Woodward-Hoffmann [J. Am. Chem. Soc. 87, 395 (1965)] rules are based. We have studied the initial chemical hardness response using a model reaction profile for two prototypical pericyclic reactions, the Diels-Alder cycloaddition of 1,3-butadiene to ethylene and the addition of ethylene to ethylene, both in the singlet ground state and in the first triplet excited state. For the reaction that is thermally allowed but photochemically forbidden, the initial hardness response is positive along the singlet reaction profile. (By contrast, for the triplet reaction profile, a negative hardness response is observed.) For the photochemically allowed, thermally forbidden reaction, the behavior of the chemical hardness along the initial stages of the singlet and triplet reaction profiles is reversed. This constitutes a first step in showing that chemical concepts from DFT can be invoked to explain results that would otherwise require invoking the phase of the wave function. (c) 2006 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Initial hardness response and hardness profiles in the study of Woodward-Hoffmann rules for electrocyclizations
    De Proft, F.
    Chattaraj, P. K.
    Ayers, P. W.
    Torrent-Sucarrat, M.
    Elango, M.
    Subramanian, V.
    Giri, S.
    Geerlings, P.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (04) : 595 - 602
  • [2] The Woodward-Hoffmann Rules Reinterpreted by Conceptual Density Functional Theory
    Geerlings, Paul
    Ayers, Paul W.
    Toro-Labbe, Alejandro
    Chattaraj, Pratim K.
    De Proft, Frank
    ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (05) : 683 - 695
  • [3] The Woodward-Hoffmann rules ...
    Gölitz, P
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (48) : 6568 - 6569
  • [4] Reformulating the Woodward-Hoffmann Rules in a Conceptual Density Functional Theory Context: the Case of Sigmatropic Reactions
    Sablon, Nick
    de Proft, Frank
    Geerlings, Paul
    CROATICA CHEMICA ACTA, 2009, 82 (01) : 157 - 164
  • [5] Revisiting Woodward-Hoffmann rules
    David, CW
    JOURNAL OF CHEMICAL EDUCATION, 1999, 76 (07) : 999 - 1001
  • [6] An improved interpretation of the Woodward-Hoffmann rules
    Patterson, RT
    JOURNAL OF CHEMICAL EDUCATION, 1999, 76 (07) : 1002 - 1007
  • [7] WOODWARD-HOFFMANN RULES - ELECTROCYCLIC REACTIONS
    VOLLMER, JJ
    SERVIS, KL
    JOURNAL OF CHEMICAL EDUCATION, 1968, 45 (04) : 214 - &
  • [8] Understanding the Woodward-Hoffmann rules by using changes in electron density
    Ayers, Paul W.
    Morell, Christophe
    De Proft, Frank
    Geerlings, Paul
    CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (29) : 8240 - 8247
  • [9] Cethrene: The Chameleon of Woodward-Hoffmann Rules
    Solomek, Tomas
    Ravat, Prince
    Mou, Zhongyu
    Kertesz, Miklos
    Juricek, Michal
    JOURNAL OF ORGANIC CHEMISTRY, 2018, 83 (08): : 4769 - 4774
  • [10] WOODWARD-HOFFMANN RULES - CYCLOADDITION REACTIONS
    VOLLMER, JJ
    SERVIS, KL
    JOURNAL OF CHEMICAL EDUCATION, 1970, 47 (07) : 491 - &