共 50 条
Thermal Stability and Cation Composition of Hybrid Organic-Inorganic Perovskites
被引:58
|作者:
Schwenzer, Jonas A.
[1
]
Hellmann, Tim
[2
]
Nejand, Bahram Abdollahi
[1
,3
]
Hu, Hang
[1
,3
]
Abzieher, Tobias
[1
]
Schackmar, Fabian
[1
,3
,4
]
Hossain, Ihteaz M.
[1
,3
]
Fassl, Paul
[1
,3
]
Mayer, Thomas
[2
]
Jaegermann, Wolfram
[2
]
Lemmer, Uli
[1
,3
,4
]
Paetzold, Ulrich W.
[1
,3
]
机构:
[1] Karlsruhe Inst Technol, Light Technol Inst, D-76131 Karlsruhe, Germany
[2] Tech Univ Darmstadt, Dept Mat & Earth Sci, Surface Sci Lab, D-64287 Darmstadt, Germany
[3] Karlsruhe Inst Technol, Inst Microstruct Technol, D-76344 Eggenstein Leopoldshafen, Germany
[4] InnovationLab, D-69115 Heidelberg, Germany
关键词:
photovoltaics;
thin film;
perovskite solar cells;
organometal halide perovskites;
temperature;
degradation;
stability;
ORGANOMETAL HALIDE PEROVSKITES;
SOLAR-CELLS;
LEAD IODIDE;
CH3NH3PBI3;
PEROVSKITE;
ELECTRICAL-PROPERTIES;
DEGRADATION;
EFFICIENT;
DESIGN;
OXIDE;
DECOMPOSITION;
D O I:
10.1021/acsami.1c01547
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
One of the great challenges of hybrid organic-inorganic perovskite photovoltaics is the material's stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 degrees C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI(3)) and formamidinium cesium lead iodide (FACsPbI(3)) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 degrees C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.
引用
收藏
页码:15292 / 15304
页数:13
相关论文