A Dual Compartment Linear-Quadratic Model of Cell Survival

被引:0
|
作者
Yu, V. Y. [1 ]
Nguyen, D. [1 ]
Pajonk, F. [2 ]
Sheng, K. [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA
关键词
D O I
10.1016/j.ijrobp.2014.05.2448
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3640
引用
收藏
页码:S855 / S855
页数:1
相关论文
共 50 条
  • [1] CELL LOSS FACTORS AND THE LINEAR-QUADRATIC MODEL
    JONES, B
    DALE, RG
    RADIOTHERAPY AND ONCOLOGY, 1995, 37 (02) : 136 - 139
  • [2] Cell-survival probability at large doses: an alternative to the linear-quadratic model
    Hanin, L. G.
    Zaider, M.
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (16): : 4687 - 4702
  • [3] A new formalism for modelling parameters α and β of the linear-quadratic model of cell survival for hadron therapy
    Vassiliev, Oleg N.
    Grosshans, David R.
    Mohan, Radhe
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (20): : 8041 - 8059
  • [4] A nanodosimetry-based linear-quadratic model of cell survival for mixed-LET radiations
    Wang, C-K Chris
    Zhang, Xin
    PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (23): : 6087 - 6098
  • [5] On the analysis of clonogenic survival data: Statistical alternatives to the linear-quadratic model
    Steffen Unkel
    Claus Belka
    Kirsten Lauber
    Radiation Oncology, 11
  • [6] On the analysis of clonogenic survival data: Statistical alternatives to the linear-quadratic model
    Unkel, Steffen
    Belka, Claus
    Lauber, Kirsten
    RADIATION ONCOLOGY, 2016, 11
  • [8] Repopulation Kinetics and the Linear-Quadratic Model
    O'Rourke, S. F. C.
    McAneney, H.
    Starrett, C.
    O'Sullivan, J. M.
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 209 - +
  • [9] Optimal Linear-Quadratic Model Designs
    Borkowski, John J.
    THAILAND STATISTICIAN, 2008, 6 (01): : 47 - 64
  • [10] The Linear-Quadratic Model and Implications for Fractionation
    Brand, D. H.
    Yarnold, J. R.
    CLINICAL ONCOLOGY, 2020, 32 (04) : 277 - 277