A class number formula for the p-cyclotomic field

被引:3
|
作者
Ichimura, Humio [1 ]
机构
[1] Ibaraki Univ, Fac Sci, Mito, Ibaraki 3108512, Japan
关键词
D O I
10.1007/s00013-006-1867-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime number and G = Gal(Q(zeta p)/Q). Let S-G be the classical Stickelberger ideal of the group ring Z[G]. Iwasawa [6] proved that the index [Z[G](-):S-G(-)] equals the relative class number h(p)(-) of Q( p). In [2], [4] we defined for each subgroup H of G a Stickelberger ideal S-H Of Z[H], and studied some of its properties. In this note, we prove that when p equivalent to 3 mod 4 and [G:H] = 2, the index [Z[H]:S-H] equals the quotient h(p)(-)/h(Q(root-p)).
引用
收藏
页码:539 / 545
页数:7
相关论文
共 50 条