Multiangular Observation of Canopy Sun-Induced Chlorophyll Fluorescence by Combining Imaging Spectroscopy and Stereoscopy

被引:38
|
作者
Pinto, Francisco [1 ,2 ]
Muller-Linow, Mark [1 ]
Schickling, Anke [1 ]
Cendrero-Mateo, M. Pilar [1 ]
Ballvora, Agim [3 ,4 ]
Rascher, Uwe [1 ]
机构
[1] Forschungszentrum Julich, IBG Plant Sci 2, Inst Bio & Geosci, D-52428 Julich, Germany
[2] Int Maize & Wheat Improvement Ctr CIMMYT, Global Wheat Program, Texcoco 56237, Mexico
[3] Univ Bonn, INRES Plant Breeding, D-53115 Bonn, Germany
[4] Univ Bonn Klein Altendorf, Expt Stn, D-53359 Rheinbach, Germany
关键词
sun-induced chlorophyll fluorescence; imaging spectroscopy; stereo imaging; 3D reconstruction; leaf angle distribution; top-of-canopy irradiance dynamics; remote sensing of vegetation; PAR (photosynthetic active radiation); Fraunhofer Line Depth (FLD); directionality effects; solar-induced fluorescence; STEADY-STATE; SPATIOTEMPORAL PATTERNS; VEGETATION FLUORESCENCE; HYPERSPECTRAL IMAGERY; RESOLUTION FIELD; WATER-STRESS; PHOTOSYNTHESIS; REFLECTANCE; RETRIEVAL; MODEL;
D O I
10.3390/rs9050415
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effect that the canopy structure and the viewing geometry have on the intensity and the spatial distribution of passively measured sun-induced chlorophyll fluorescence at canopy scale is still not well understood. These uncertainties constrain the potential use of fluorescence to quantify photosynthesis at this level. Using a novel technique, we evaluated the diurnal changes in the spatial distribution of sun-induced fluorescence at 760 nm (F760) within the canopy as a consequence of the spatial disposition of the leaves and the viewing angle of the sensor. High resolution spectral and stereo images of a full sugar beet canopy were recorded simultaneously in the field to estimate maps of F760 and the surface angle distribution, respectively. A dedicated algorithm was used to align both maps in the post-processing and its accuracy was evaluated using a sensitivity test. The relative angle between sun and the leaf surfaces primarily determined the amount of incident Photosynthetic Active Radiation (PAR), which in turn was reflected in different values of F760, with the highest values occurring in leaf surfaces that are perpendicularly oriented to the sun. The viewing angle of the sensor also had an impact in the intensity of the recorded F760. Higher viewing angles generally resulted in higher values of F760. We attribute these changes to a direct effect of the vegetation directional reflectance response on fluorescence retrieval. Consequently, at leaf surface level, the spatio-temporal variations of F760 were mainly explained by the sun-leaf-sensor geometry rather than directionality of the fluorescence emission. At canopy scale, the diurnal patterns of F760 observed on the top-of-canopy were attributed to the complex interplay between the light penetration into the canopy as a function of the display of the various leaves and the fluorescence emission of each leaf which is modulated by the exposure of the individual leaf patch to the incoming light and the functional status of photosynthesis. We expect that forward modeling can help derive analytical simplified skeleton assumptions to scale canopy measurements to the leaf functional properties.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Effect of canopy structure on sun-induced chlorophyll fluorescence
    Fournier, A.
    Daumard, F.
    Champagne, S.
    Ounis, A.
    Goulas, Y.
    Moya, I.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2012, 68 : 112 - 120
  • [2] Potential of Sun-Induced Chlorophyll Fluorescence for Indicating Mangrove Canopy Photosynthesis
    Zhu, Xudong
    Hou, Yuwen
    Zhang, Yongguang
    Lu, Xiaoliang
    Liu, Zhunqiao
    Weng, Qihao
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2021, 126 (04)
  • [3] AIRBORNE BASED SPECTROSCOPY TO MEASURE SUN-INDUCED CHLOROPHYLL FLUORESCENCE
    Damn, Alexander
    Rossini, Micol
    Colombo, Roberto
    Rascher, Uwe
    Schaepman, Michael E.
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [4] Modeling of Cotton Yield Estimation Based on Canopy Sun-Induced Chlorophyll Fluorescence
    Wang, Hongyu
    Ding, Yiren
    Yao, Qiushuang
    Ma, Lulu
    Ma, Yiru
    Yang, Mi
    Qin, Shizhe
    Xu, Feng
    Zhang, Ze
    Gao, Zhe
    AGRONOMY-BASEL, 2024, 14 (02):
  • [5] Monitoring of chlorophyll content in rice canopy and single leaf using sun-induced chlorophyll fluorescence
    Yin Y.
    Wang Y.
    Ma C.
    Zheng H.
    Cheng T.
    Tian Y.
    Zhu Y.
    Cao W.
    Yao X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (12): : 169 - 180
  • [6] Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops
    Dechant, Benjamin
    Ryu, Youngryel
    Badgley, Grayson
    Zeng, Yelu
    Berry, Joseph A.
    Zhang, Yongguang
    Goulas, Yves
    Li, Zhaohui
    Zhang, Qian
    Kang, Minseok
    Li, Ji
    Moya, Ismael
    REMOTE SENSING OF ENVIRONMENT, 2020, 241 (241)
  • [7] An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies
    Zhou, Xijia
    Liu, Zhigang
    Xu, Shan
    Zhang, Weiwei
    Wu, Jun
    SENSORS, 2016, 16 (06):
  • [8] Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance
    Yang, Peiqi
    van der Tol, Christiaan
    REMOTE SENSING OF ENVIRONMENT, 2018, 209 : 456 - 467
  • [9] Remote Sensing of Instantaneous Drought Stress at Canopy Level Using Sun-Induced Chlorophyll Fluorescence and Canopy Reflectance
    De Canniere, Simon
    Vereecken, Harry
    Defourny, Pierre
    Jonard, Francois
    REMOTE SENSING, 2022, 14 (11)
  • [10] Dynamics of sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis
    Pinto, Francisco
    Celesti, Marco
    Acebron, Kelvin
    Alberti, Giorgio
    Cogliati, Sergio
    Colombo, Roberto
    Juszczak, Radoslaw
    Matsubara, Shizue
    Miglietta, Franco
    Palombo, Angelo
    Panigada, Cinzia
    Pignatti, Stefano
    Rossini, Micol
    Sakowska, Karolina
    Schickling, Anke
    Schuttemeyer, Dirk
    Strozecki, Marcin
    Tudoroiu, Marin
    Rascher, Uwe
    PLANT CELL AND ENVIRONMENT, 2020, 43 (07): : 1637 - 1654