Criticality of compressible rotating flows

被引:4
|
作者
Renac, Florent [1 ]
Sipp, Denis [1 ]
Jacquin, Laurent [1 ]
机构
[1] Off Natl Etud & Rech Aerosp, F-92190 Meudon, France
关键词
D O I
10.1063/1.2427090
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The effect of compressibility on the criticality of swirling subsonic flows is investigated. This study extends previous works by Rusak and Lee [J. Fluid Mech. 461, 301 (2002); 501, 25 (2004)] on the critical swirl of subsonic vortex flows in a circular straight pipe. We derive an asymptotic solution in the case of an isothermal plug-flow with solid-body rotation. In the limit of low Mach number M-0 < 1, it is shown that the critical swirl increases with M-0 as S-c similar to S-c,S-0/(1-M-0(2))(1/2), where S-c,S-0 is the critical swirl of the incompressible flow. This result still holds when varying the thermodynamic properties of the flow or when considering different vortex models as the Batchelor vortex. Physically, compressibility is found to slow down phase and group velocities of axisymmetric Kelvin waves, thus decreasing the rotation contribution to flow criticality. It is shown that compressibility damps the stretching mechanism which contributes to the wave propagation in the incompressible limit.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] ROTATING COMPRESSIBLE FLOWS WITH INTERNAL SOURCES AND SINKS
    WOOD, HG
    SANDERS, G
    JOURNAL OF FLUID MECHANICS, 1983, 127 (FEB) : 299 - 313
  • [2] RAYLEIGH–TAYLOR INSTABILITY FOR COMPRESSIBLE ROTATING FLOWS
    段然
    江飞
    尹俊平
    Acta Mathematica Scientia(English Series), 2015, 35 (06) : 1359 - 1385
  • [3] RAYLEIGH TAYLOR INSTABILITY FOR COMPRESSIBLE ROTATING FLOWS
    Duan, Ran
    Jiang, Fei
    Yin, Junping
    ACTA MATHEMATICA SCIENTIA, 2015, 35 (06) : 1359 - 1385
  • [5] A study of the effects of baffles on rotating compressible flows
    Gunzburger, Max D.
    Wood, Houston G.
    Wayland, Rosser L.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1989, 56 (03): : 710 - 712
  • [6] COMPUTATION OF STRONGLY COMPRESSIBLE ROTATING-FLOWS
    HARADA, I
    JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 38 (03) : 335 - 356
  • [7] Slightly compressible Forchheimer flows in rotating porous media
    Celik, Emine
    Hoang, Luan
    Kieu, Thinh
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [8] Meshless kinetic upwind method for compressible, viscous rotating flows
    Mahendra, A. K.
    Singh, R. K.
    Gouthaman, G.
    COMPUTERS & FLUIDS, 2011, 46 (01) : 325 - 332
  • [9] Noisy Lagrangian Tracers for Filtering Random Rotating Compressible Flows
    Nan Chen
    Andrew J. Majda
    Xin T. Tong
    Journal of Nonlinear Science, 2015, 25 : 451 - 488
  • [10] APPROXIMATE EIGENSOLUTIONS FOR NON-AXISYMMETRICAL ROTATING COMPRESSIBLE FLOWS
    BABARSKY, RJ
    WOOD, HG
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 81 (03) : 317 - 332