Harvesting energy from the surrounding environment through piezoelectric conversion is a promising method for implementing self-sustained low-power devices. To date, most piezoelectric energy harvesters (PEHs) developed can only scavenge energy from the unidirectional mechanical vibration. This deficiency severely limits the adaptability of PEHs because the real-world excitations may involve different mechanical motions and the mechanical vibration may come from various directions. To tackle this issue, we proposed a multipurpose PEH, which is composed of a ferromagnetic ball, a cylindrical track and four piezoelectric cantilever beams. In this paper, theoretical and experimental studies were carried out to examine the performance of the multipurpose PEH. The experimental results indicate that, under the vibrations that are perpendicular to the ground, the maximum peak voltage is increased by 3.2 V and the bandwidth of the voltage above 4 V is expanded by more than 4 Hz by the proposed PEH as compared to its linear counterpart; the maximum power output of 0.8 mW is attained when the PEH is excited at 39.5 Hz. Under the sway motion around different directions on the horizontal plane, significant power outputs, varying from 0.05 mW to 0.18 mW, are also generated by the multipurpose PEH when the sway angle is larger than 5 degrees and the sway frequency is smaller than 2.8 Hz. In addition, the multipurpose PEH demonstrates the capacity of collecting energy from the rotation motion, and approximately 0.14 mW power output is achieved when the rotation frequency is 1 Hz.