On the φJ polar decomposition of matrices

被引:10
|
作者
Merino, Dennis I. [1 ]
Paras, Agnes T. [2 ]
Pelejo, Diane Christine P. [2 ]
机构
[1] SE Louisiana Univ, Dept Math, Hammond, LA 70402 USA
[2] Univ Philippines, Inst Math, Quezon City 1101, Philippines
关键词
phi(J) polar decomposition; Symplectic matrices; Skew-Hamiltonian matrices;
D O I
10.1016/j.laa.2009.10.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new results on the phi(J) polar decomposition of matrices. We show that every symplectic matrix may be written as a product of symplectic operation matrices. We present a simple form attained under symplectic equivalence, which makes it easy to determine if a matrix does not have a phi(J) polar decomposition. We also determine the rank 4 matrices with phi(J) polar decomposition. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1165 / 1175
页数:11
相关论文
共 50 条