3D Human Motion Capture Based on Neural Network and Triangular Gaussian Point Cloud

被引:0
|
作者
You, Qing [1 ]
Chen, Wenjie
Li, Ye
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
关键词
Pose Estimation; Gaussian Point Cloud; Depth Neural Network; Triangulation; Least Square;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an optical unmarked motion capture method based on convolutional neural network and triangular gaussian point cloud is proposed to achieve accurate 3D human pose estimation. Firstly, the Direct Linear Transformation(DLT) method is used to calibrate the actual multi camera system and obtain the internal and external parameters of all cameras. Then the depth neural network Cascaded Pyramid Network(CPN) is used to extract the 2D human key points in the images collected by each camera in the system. Next the triangle positioning and the least square method are used to preliminarily obtain the 3D human key point coordinates, and then the 3D key points of human body are optimized by gauss point cloud method to get the accurate 3D results of human body.
引用
收藏
页码:7481 / 7486
页数:6
相关论文
共 50 条
  • [1] 3D Human Motion Synthesis Based on Convolutional Neural Network
    Zhou, Dongsheng
    Feng, Xinzhu
    Yi, Pengfei
    Yang, Xin
    Zhang, Qiang
    Wei, Xiaopeng
    Yang, Deyun
    IEEE ACCESS, 2019, 7 : 66325 - 66335
  • [2] DEEP LEARNING ON POINT CLOUD FOR 3D CLASSIFICATION BASED ON SPIKING NEURAL NETWORK
    Zhang Silin
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [3] Point cloud based deep convolutional neural network for 3D face recognition
    Anagha R. Bhople
    Akhilesh M. Shrivastava
    Surya Prakash
    Multimedia Tools and Applications, 2021, 80 : 30237 - 30259
  • [4] Point cloud based deep convolutional neural network for 3D face recognition
    Bhople, Anagha R.
    Shrivastava, Akhilesh M.
    Prakash, Surya
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30237 - 30259
  • [5] Octant Convolutional Neural Network for 3D Point Cloud Analysis
    Xu X.
    Shuai H.
    Liu Q.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (12): : 2791 - 2800
  • [6] CorsNet: 3D Point Cloud Registration by Deep Neural Network
    Kurobe, Akiyoshi
    Sekikawa, Yusuke
    Ishikawa, Kohta
    Saito, Hideo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03): : 3960 - 3966
  • [7] RFNet: Convolutional Neural Network for 3D Point Cloud Classification
    Shan X.-Y.
    Sun Z.-L.
    Zeng Z.-G.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (11): : 2350 - 2359
  • [8] Point Cloud Labeling using 3D Convolutional Neural Network
    Huang, Jing
    You, Suya
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2670 - 2675
  • [9] Neural Monocular 3D Human Motion Capture with Physical Awareness
    Shimada, Soshi
    Golyanik, Vladislav
    Xu, Weipeng
    Perez, Patrick
    Theobalt, Christian
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [10] 3D Point Cloud Reconstruction Based on Deformed Network
    Liu, Wei
    Sun, Xiu-Yan
    Tang, Lin-Lin
    Kumar, Sachin
    Journal of Network Intelligence, 2021, 6 (04): : 818 - 827