Vertex-minors, monadic second-order logic, and a conjecture by Seese

被引:59
|
作者
Courcelle, Bruno
Oum, Sang-il
机构
[1] Univ Bordeaux 1, CNRS, LaBRI, F-33405 Talence, France
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08540 USA
关键词
clique-width; rank-width; monadic second-order logic; Seese's conjecture; local complementation; vertex-minor; isotropic system;
D O I
10.1016/j.jctb.2006.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that one can express the vertex-minor relation on finite undirected graphs by formulas of monadic second-order logic (with no edge set quantification) extended with a predicate expressing that a set has even cardinality. We obtain a slight weakening of a conjecture by Seese stating that sets of graphs having a decidable satisfiability problem for monadic second-order logic have bounded clique-width. We also obtain a polynomial-time algorithm to check that the rank-width of a graph is at most k for any fixed k. The proofs use isotropic systems. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 126
页数:36
相关论文
共 50 条
  • [1] The monadic second-order logic of graphs XV: On a conjecture by D. Seese
    LaBRI, CNRS, Bordeaux 1 University, 351 cours de la Libération, F-33405 Talence, France
    J. Appl. Logic, 2006, 1 (79-114):
  • [2] Vertex-minors and the Erdos-Hajnal conjecture
    Chudnovsky, Maria
    Oum, Sang-il
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3498 - 3499
  • [3] Monadic Second-Order Logic with Arbitrary Monadic Predicates
    Fijalkow, Nathanael
    Paperman, Charles
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2014, PT I, 2014, 8634 : 279 - 290
  • [4] Monadic Second-Order Logic with Arbitrary Monadic Predicates
    Fijalkow, Nathanael
    Paperman, Charles
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2017, 18 (03)
  • [5] Quantitative Monadic Second-Order Logic
    Kreutzer, Stephan
    Riveros, Cristian
    2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2013, : 113 - 122
  • [6] Computability by monadic second-order logic
    Engelfriet, Joost
    INFORMATION PROCESSING LETTERS, 2021, 167
  • [7] Asymptotic Monadic Second-Order Logic
    Blumensath, Achim
    Carton, Olivier
    Colcombet, Thomas
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2014, PT I, 2014, 8634 : 87 - +
  • [8] On Brambles, Grid-Like Minors, and Parameterized Intractability of Monadic Second-Order Logic
    Kreutzer, Stephan
    Tazari, Siamak
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 354 - +
  • [9] Monadic Second-Order Logic on Finite Sequences
    D'Antoni, Loris
    Veanes, Margus
    ACM SIGPLAN NOTICES, 2017, 52 (01) : 232 - 245
  • [10] On the Parameterised Intractability of Monadic Second-Order Logic
    Kreutzer, Stephan
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2009, 5771 : 348 - 363