Real-Time Machine Learning: The Missing Pieces

被引:31
|
作者
Nishihara, Robert [1 ]
Moritz, Philipp [1 ]
Wang, Stephanie [1 ]
Tumanov, Alexey [1 ]
Paul, William [1 ]
Schleier-Smith, Johann [1 ]
Liaw, Richard [1 ]
Niknami, Mehrdad [1 ]
Jordan, Michael, I [1 ]
Stoica, Ion [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
D O I
10.1145/3102980.3102998
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Machine learning applications are increasingly deployed not only to serve predictions using static models, but also as tightly-integrated components of feedback loops involving dynamic, real-time decision making. These applications pose a new set of requirements, none of which are difficult to achieve in isolation, but the combination of which creates a challenge for existing distributed execution frameworks: computation with millisecond latency at high throughput, adaptive construction of arbitrary task graphs, and execution of heterogeneous kernels over diverse sets of resources. We assert that a new distributed execution framework is needed for such ML applications and propose a candidate approach with a proof-of-concept architecture that achieves a 63x performance improvement over a state-of-the-art execution framework for a representative application.
引用
收藏
页码:106 / 110
页数:5
相关论文
共 50 条
  • [1] Machine Learning Application for Real-Time Simulator
    Hadadi, Azadeh
    Chardonnet, Jean-Remy
    Guillet, Christophe
    Ovtcharova, Jivka
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, : 1 - 5
  • [2] Learning system in real-time machine vision
    Li, Wenbin
    Lv, Zhihan
    Cosker, Darren
    Yang, Yongliang
    NEUROCOMPUTING, 2018, 288 : 1 - 2
  • [3] Machine learning for real-time remote detection
    Labbe, Benjamin
    Fournier, Jerome
    Henaff, Gilles
    Bascle, Benedicte
    Canu, Stephane
    OPTICS AND PHOTONICS FOR COUNTERTERRORISM AND CRIME FIGHTING VI AND OPTICAL MATERIALS IN DEFENCE SYSTEMS TECHNOLOGY VII, 2010, 7838
  • [4] A Compositional Approach for Real-Time Machine Learning
    Allen, Nathan
    Raje, Yash
    Ro, Jin Woo
    Roop, Partha
    17TH ACM-IEEE INTERNATIONAL CONFERENCE ON FORMAL METHODS AND MODELS FOR SYSTEM DESIGN (MEMOCODE), 2019,
  • [5] A Versatile Machine Vision Algorithm for Real-Time Counting Manually Assembled Pieces
    Pierleoni, Paola
    Belli, Alberto
    Palma, Lorenzo
    Sabbatini, Luisiana
    JOURNAL OF IMAGING, 2020, 6 (06)
  • [6] Machine Learning for Real-Time Heart Disease Prediction
    Bertsimas, Dimitris
    Mingardi, Luca
    Stellato, Bartolomeo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) : 3627 - 3637
  • [7] A Real-Time Machine Learning Approach for Sentiment Analysis
    Sarkar, Souvik
    Mallick, Partho
    Banerjee, Aiswaryya
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 1, 2015, 339 : 705 - 717
  • [8] A Machine Learning Approach for Real-Time Reachability Analysis
    Allen, Ross E.
    Clark, Ashley A.
    Starek, Joseph A.
    Pavone, Marco
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 2202 - 2208
  • [9] Algorithmic trading of real-time electricity with machine learning
    Ganesh, Vighnesh Natarajan
    Bunn, Derek
    QUANTITATIVE FINANCE, 2024, 24 (11) : 1545 - 1559
  • [10] Learning to Translate in Real-time with Neural Machine Translation
    Gu, Jiatao
    Neubig, Graham
    Cho, Kyunghyun
    Li, Victor O. K.
    15TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2017), VOL 1: LONG PAPERS, 2017, : 1053 - 1062