WELL-POSEDNESS OF SECOND-ORDER DEGENERATE DIFFERENTIAL EQUATIONS WITH FINITE DELAY IN VECTOR-VALUED FUNCTION SPACES

被引:10
|
作者
Bu, Shangquan [1 ]
Cai, Gang [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
关键词
Degenerate differential equations; delay equations; well-posedness; Lebesgue-Bochner spaces; Besov spaces; Fourier multipliers; PERIODIC-SOLUTIONS; FOURIER MULTIPLIERS; BESOV-SPACES;
D O I
10.2140/pjm.2017.288.27
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give necessary and sufficient conditions of the LpLp-well-posedness (respectively, B-p,q(s)) for the second-order degenerate differential equation with finite delay: (Mu')'(t)+alpha u'(t)=Au(t)+Gu'(t)+Fu(t)+f(t)(Mu')'(t)+alpha u'(t)=Au(t)+Gu(t)'+Fu(t)+f(t), (t is an element of[0,2 pi]) with periodic boundary conditions u(0)=u(2 pi) (Mu')(0)=(Mu')(2 pi), (Mu')(2 pi), where A and M are closed linear operators on a Banach space XX satisfying D(A)subset of D(M) and F and G are bounded linear operators from L-p([-2 pi,0];X) (respectively, B-p,q(s)([-2 pi,0];X)B-p,(s)(q)([-2 pi,0];X)) into X.
引用
收藏
页码:27 / 46
页数:20
相关论文
共 50 条