Thermal imaging of solid oxide fuel cell anode processes

被引:51
|
作者
Pomfret, Michael B. [1 ]
Steinhurst, Daniel A. [2 ]
Kidwell, David A. [1 ]
Owrutsky, Jeffrey C. [1 ]
机构
[1] USN, Div Chem, Res Lab, Washington, DC 20375 USA
[2] Nova Res Inc, Alexandria, VA 22308 USA
关键词
Thermal imaging; Solid oxide fuel cell; In situ optics; Hydrocarbon fuels; IN-SITU RAMAN; OXIDATION; METHANOL; ETHANOL; SYSTEM;
D O I
10.1016/j.jpowsour.2009.06.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H-2 and carbon deposition lead to the fragment cooling by 5+/-2 degrees C and 16+/-1 degrees C, respectively. When air is flowed over the fragments, the temperature rises 24+/-1 degrees C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0+/-0.1 degrees C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Delta T of +2.2+/-0.2 degrees C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (similar to 0.1mm) and temperature (similar to 0.1 degrees C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. Published by Elsevier B.V.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [1] Nondestructive Imaging and Analysis of Transport Processes in the Solid Oxide Fuel Cell Anode
    Grew, K. N.
    Peracchio, A. A.
    Izzo, J. R., Jr.
    Chiu, W. K. S.
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 1861 - 1870
  • [2] Thermal Imaging of Solid Oxide Fuel Cell Anode Degradation with Dry and Wet Ethanol Fuel Flows
    Pomfret, Michael B.
    Steinhurst, Daniel A.
    Owrutsky, Jeffrey C.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 1563 - 1570
  • [3] Thermal Stress of Solid Oxide Fuel Cell with Gradient Porosity Anode
    Song, Ming
    Du, Chuansheng
    Wang, Bingying
    Ma, Shuai
    Jiang, Wenchun
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (05): : 1233 - 1240
  • [4] Thermal modeling of a small anode supported solid oxide fuel cell
    Larrain, D
    Van herle, J
    Maréchal, F
    Favrat, D
    JOURNAL OF POWER SOURCES, 2003, 118 (1-2) : 367 - 374
  • [5] REAL TIME THERMAL IMAGING OF SOLID OXIDE FUEL CELL
    Jasinski, M.
    Ziewiec, K.
    Wojciechowska, M.
    ARCHIVES OF METALLURGY AND MATERIALS, 2019, 64 (04) : 1207 - 1212
  • [6] Solid Oxide Fuel Cell Anode Materials
    E. M. Brodnikovskii
    Powder Metallurgy and Metal Ceramics, 2015, 54 : 166 - 174
  • [7] Solid Oxide Fuel Cell Anode Materials
    Brodnikovskii, E. M.
    POWDER METALLURGY AND METAL CERAMICS, 2015, 54 (3-4) : 166 - 174
  • [8] Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses
    Xu, Min
    Li, Ting Shuai
    Yang, Ming
    Andersson, Martin
    Fransson, Ida
    Larsson, Tara
    Sunden, Bengt
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (33) : 14927 - 14940
  • [9] Thermal Stress Analysis of Solid Oxide Fuel Cell with Anode Functional Layer
    Xie Jia-Miao
    Wang Feng-Hui
    JOURNAL OF INORGANIC MATERIALS, 2017, 32 (04) : 400 - 406
  • [10] Analysis of anode functional layer for minimizing thermal stress in solid oxide fuel cell
    Xie, Jiamiao
    Hao, Wenqian
    Wang, Fenghui
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (10):