Grassmann geometry;
unimodular Lie group;
Heisenberg group;
Euclidean plane;
Minkowski plane;
special unitary group;
special linear group;
totally geodesic surface;
flat surface;
minimal surface;
surface of constant mean curvature;
PARALLEL SURFACES;
SPACES;
D O I:
10.14492/hokmj/1258553972
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the Grassmann geometry of surfaces when the ambient space is a 3-dimensional unimodular Lie group with left invariant metric, that is, it is one of the 3-dimensional commutative Lie group, the 3-dimensional Heisenberg group, the groups of rigid motions on the Euclidean or the Minkowski planes, the special unitary group SU(2), and the special real linear group SL(2, R).