Grassmann geometry on the 3-dimensional unimodular Lie groups I

被引:3
|
作者
Inoguchi, Jun-ichi [1 ]
Naitoh, Hiroo [2 ]
机构
[1] Yamagata Univ, Fac Sci, Dept Math Sci, Yamagata 9908560, Japan
[2] Yamaguchi Univ, Dept Math, Yamaguchi 7538512, Japan
关键词
Grassmann geometry; unimodular Lie group; Heisenberg group; Euclidean plane; Minkowski plane; special unitary group; special linear group; totally geodesic surface; flat surface; minimal surface; surface of constant mean curvature; PARALLEL SURFACES; SPACES;
D O I
10.14492/hokmj/1258553972
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Grassmann geometry of surfaces when the ambient space is a 3-dimensional unimodular Lie group with left invariant metric, that is, it is one of the 3-dimensional commutative Lie group, the 3-dimensional Heisenberg group, the groups of rigid motions on the Euclidean or the Minkowski planes, the special unitary group SU(2), and the special real linear group SL(2, R).
引用
收藏
页码:427 / 496
页数:70
相关论文
共 50 条