Evolving Temporal Association Rules with Genetic Algorithms

被引:4
|
作者
Matthews, Stephen G. [1 ]
Gongora, Mario A. [1 ]
Hopgood, Adrian A. [1 ]
机构
[1] De Montfort Univ, Ctr Computat Intelligence, Leicester, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-0-85729-130-1_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of the proposed framework isolates target temporal itemsets in synthetic datasets. The Iterative Rule Learning method successfully discovers these targets in datasets with varying levels of difficulty.
引用
收藏
页码:107 / 120
页数:14
相关论文
共 50 条
  • [1] Evolving Profitable Trading Rules with Genetic Algorithms
    Shin, Kyung-shik
    Kim, Kyoung-jae
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (08): : 3313 - 3321
  • [2] Contextual genetic algorithms: Evolving developmental rules
    Rocha, LM
    ADVANCES IN ARTIFICIAL LIFE, 1995, 929 : 368 - 382
  • [3] Evolving temporal association rules in recommender system
    Zhou, Huiyu
    Hirasawa, Kotaro
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07): : 2605 - 2619
  • [4] Evolving temporal association rules in recommender system
    Huiyu Zhou
    Kotaro Hirasawa
    Neural Computing and Applications, 2019, 31 : 2605 - 2619
  • [5] TAR: Temporal association rules on evolving numerical attributes
    Wang, W
    Yang, J
    Muntz, R
    17TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2001, : 283 - 292
  • [6] Evolving TSK fuzzy rules for classification tasks by genetic algorithms
    Espíndola, RP
    Ebecken, NFF
    DATA MINING II, 2000, 2 : 467 - 476
  • [7] Mining numeric association rules with genetic algorithms
    Mata, J
    Alvarez, JL
    Riquelme, JC
    ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, 2001, : 264 - 267
  • [8] Fast algorithms for temporal association rules in a large database
    Byon, LN
    Han, JH
    ON THE CONVERGENCE OF BIO-INFORMATION-, ENVIRONMENTAL-, ENERGY-, SPACE- AND NANO-TECHNOLOGIES, PTS 1 AND 2, 2005, 277-279 : 287 - 292
  • [10] ARMGA: Identifying interesting association rules with genetic algorithms
    Yan, XW
    Zhang, CQ
    Zhang, SC
    APPLIED ARTIFICIAL INTELLIGENCE, 2005, 19 (07) : 677 - 689