SMuRF: portable and accurate ensemble prediction of somatic mutations

被引:13
|
作者
Huan, Weitai [1 ,2 ]
Guo, Yu Amanda [1 ]
Muthukumar, Karthik [1 ]
Baruah, Probhonjon [1 ]
Chang, Mei Mei [1 ]
Skanderup, Anders Jacobsen [1 ]
机构
[1] Agcy Sci Technol & Res, Genome Inst Singapore, Dept Computat & Syst Biol, Singapore 138672, Singapore
[2] Natl Univ Singapore, Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
基金
英国医学研究理事会;
关键词
CANCER;
D O I
10.1093/bioinformatics/btz018
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Summary: Somatic Mutation calling method using a Random Forest (SMuRF) integrates predictions and auxiliary features from multiple somatic mutation callers using a supervised machine learning approach. SMuRF is trained on community-curated matched tumor and normal whole genome sequencing data. SMuRF predicts both SNVs and indels with high accuracy in genome or exome-level sequencing data. Furthermore, the method is robust across multiple tested cancer types and predicts low allele frequency variants with high accuracy. In contrast to existing ensemble-based somatic mutation calling approaches, SMuRF works out-of-the-box and is orders of magnitudes faster.
引用
收藏
页码:3157 / 3159
页数:3
相关论文
共 50 条
  • [1] NeoMutate: an ensemble machine learning framework for the prediction of somatic mutations in cancer
    Irantzu Anzar
    Angelina Sverchkova
    Richard Stratford
    Trevor Clancy
    BMC Medical Genomics, 12
  • [2] NeoMutate: an ensemble machine learning framework for the prediction of somatic mutations in cancer
    Anzar, Irantzu
    Sverchkova, Angelina
    Stratford, Richard
    Clancy, Trevor
    BMC MEDICAL GENOMICS, 2019, 12 (1)
  • [3] SMuRF: a novel tool to identify regulatory elements enriched for somatic point mutations
    Paul Guilhamon
    Mathieu Lupien
    BMC Bioinformatics, 19
  • [4] SMuRF: a novel tool to identify regulatory elements enriched for somatic point mutations
    Guilhamon, Paul
    Lupien, Mathieu
    BMC BIOINFORMATICS, 2018, 19
  • [5] An ensemble approach to accurately detect somatic mutations using SomaticSeq
    Li Tai Fang
    Pegah Tootoonchi Afshar
    Aparna Chhibber
    Marghoob Mohiyuddin
    Yu Fan
    John C. Mu
    Greg Gibeling
    Sharon Barr
    Narges Bani Asadi
    Mark B. Gerstein
    Daniel C. Koboldt
    Wenyi Wang
    Wing H. Wong
    Hugo Y.K. Lam
    Genome Biology, 16
  • [6] An ensemble approach to accurately detect somatic mutations using SomaticSeq
    Fang, Li Tai
    Afshar, Pegah Tootoonchi
    Chhibber, Aparna
    Mohiyuddin, Marghoob
    Fan, Yu
    Mu, John C.
    Gibeling, Greg
    Barr, Sharon
    Asadi, Narges Bani
    Gerstein, Mark B.
    Koboldt, Daniel C.
    Wang, Wenyi
    Wong, Wing H.
    Lam, Hugo Y. K.
    GENOME BIOLOGY, 2015, 16
  • [7] Virmid: accurate detection of somatic mutations with sample impurity inference
    Kim, Sangwoo
    Jeong, Kyowon
    Bhutani, Kunal
    Lee, Jeong Ho
    Patel, Anand
    Scott, Eric
    Nam, Hojung
    Lee, Hayan
    Gleeson, Joseph G.
    Bafna, Vineet
    GENOME BIOLOGY, 2013, 14 (08):
  • [8] Virmid: accurate detection of somatic mutations with sample impurity inference
    Sangwoo Kim
    Kyowon Jeong
    Kunal Bhutani
    Jeong Ho Lee
    Anand Patel
    Eric Scott
    Hojung Nam
    Hayan Lee
    Joseph G Gleeson
    Vineet Bafna
    Genome Biology, 14
  • [9] Ensemble Machine Learning Framework for Accurate Flood Prediction
    Varghese, Akanksha
    Gupta, Vijay Baboo
    Saxena, Mayank
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [10] An ensemble approach to accurately detect somatic mutations via adaptive boosting
    Fang, Li Tai
    Afshar, Pegah T.
    Mu, John C.
    Asadi, Narges Bani
    Wong, Wing H.
    Lam, Hugo Y. K.
    CANCER RESEARCH, 2015, 75