Database Kernel for Image Retrieval

被引:0
|
作者
Spahiu, Cosmin Stoica [1 ]
Mihaescu, Cristian Marian [1 ]
Stanescu, Liana [1 ]
Burdescu, Dan [1 ]
Brezovan, Marius [1 ]
机构
[1] Univ Craiova, Fac Automat Comp & Elect, Craiova, Romania
关键词
multimedia; database management server; content based retrieval; clustering;
D O I
10.1109/MMEDIA.2009.39
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents a software tool that implements a dedicated multimedia database management server for managing alphanumerical and multimedia data collections front medical domain. An element of originality for this database management system (DBMS) is that along with classical operations for databases, it includes a series of algorithms used for extracting visual information front images (texture and color characteristics). The color histogram with 166 colors in HSV space represents the image color information. A vector with 12 values represents the texture information obtained by applying Gabor filters. The extracted data are stored in the database in a special data type called IMAGE, with a specific structure that can he used for visual queries. To increase the image retrieval speed, there are used some clustering algorithms.
引用
收藏
页码:169 / 173
页数:5
相关论文
共 50 条
  • [1] Medical Image Database Kernel with a NN Selection Driven Image Retrieval Algorithm
    Cornita, Vasile
    Strungaru, Rodica
    Pasca, Sever
    Ungureanu, Mihaela
    Perianu, Florin
    NONLINEAR OPTICS QUANTUM OPTICS-CONCEPTS IN MODERN OPTICS, 2009, 39 (2-3): : 209 - 217
  • [2] Medical image database kernel with a NN selection driven image retrieval algorithm
    Cornita, Vasile
    Strungaru, Rodica
    Pasca, Sever
    Ungureanu, G.M.
    Perianu, Florin
    Nonlinear Optics Quantum Optics, 2009, 39 (2-3): : 209 - 217
  • [3] Image retrieval with graph kernel on regions
    Lebrun, Justine
    Philipp-Foliguet, Sylvie
    Gosselin, Philippe-Henri
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3245 - 3248
  • [4] Image correlogram in image database indexing and retrieval
    Kunttu, I
    Lepistö, L
    Visa, A
    Rauhamaa, J
    Digital Media: Processing Multimedia Interactive Services, 2003, : 88 - 91
  • [5] Textural features for image database retrieval
    Aksoy, S
    Haralick, RM
    IEEE WORKSHOP ON CONTENT-BASED ACCESS OF IMAGE AND VIDEO LIBRARIES - PROCEEDINGS, 1998, : 45 - 49
  • [6] Structuring a Sharded Image Retrieval Database
    Liang, Eric
    Zakhor, Avideh
    MULTIMEDIA CONTENT AND MOBILE DEVICES, 2013, 8667
  • [7] Structure driven image database retrieval
    De Bonet, JS
    Viola, P
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 866 - 872
  • [8] Database Saliency for Fast Image Retrieval
    Gao, Yuan
    Shi, Miaojing
    Tao, Dacheng
    Xu, Chao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (03) : 359 - 369
  • [9] SIMILARITY RETRIEVAL OF ICONIC IMAGE DATABASE
    LEE, SY
    SHAN, MK
    YANG, WP
    PATTERN RECOGNITION, 1989, 22 (06) : 675 - 682
  • [10] DISCRIMINATIVE PROBABILISTIC KERNEL LEARNING FOR IMAGE RETRIEVAL
    Wang, Bin
    Liu, Yuncai
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2587 - 2591