DECODING 5G-NR COMMUNICATIONS VIA DEEP LEARNING

被引:0
|
作者
Henarejos, Pol [1 ]
Angel Vazquez, Miguel [1 ]
机构
[1] Ctr Tecnol Telecomunicac Catalunya CTTC, Castelldefels, Spain
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
关键词
Deep Learning; Denoising; 5G and Beyond; Autoencoding; Regression;
D O I
10.1109/icassp40776.2020.9054192
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Upcoming modern communications are based on 5G specifications and aim at providing solutions for novel vertical industries. One of the major changes of the physical layer is the use of Low-Density Parity-Check (LDPC) code for channel coding. Although LDPC codes introduce additional computational complexity compared with the previous generation, where Turbocodeswhere used, LDPC codes provide a reasonable trade-off in terms of complexity-Bit Error Rate (BER). In parallel to this, Deep Learning algorithms are experiencing a new revolution, specially to image and video processing. In this context, there are some approaches that can be exploited in radio communications. In this paper we propose to use Autoencoding Neural Networks (ANN) jointly with a Deep Neural Network (DNN) to construct Autoencoding Deep Neural Networks (ADNN) for demapping and decoding. The results will unveil that, for a particular BER target, 3 dB less of Signal to Noise Ratio (SNR) is required, in AdditiveWhite Gaussian Noise (AWGN) channels.
引用
收藏
页码:3782 / 3786
页数:5
相关论文
共 50 条
  • [1] On List Decoding of 5G-NR Polar Codes
    Pillet, Charles
    Bioglio, Valerio
    Condo, Carlo
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [2] Joint MIMO Detection and LDPC Decoding Via Enhanced Belief Propagation for 5G-NR
    Qian, Jing
    Hu, Sha
    Wang, Hao
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1093 - 1098
  • [3] Deep learning based Doppler frequency offset estimation for 5G-NR downlink in HSR scenario
    Yang L.
    Wang Z.
    Zhang J.
    Jiang T.
    High Technology Letters, 2022, 28 (02) : 115 - 121
  • [4] Deep learning based Doppler frequency offset estimation for 5G-NR downlink in HSR scenario
    杨丽花
    WANG Zenghao
    ZHANG Jie
    JIANG Ting
    High Technology Letters, 2022, 28 (02) : 115 - 121
  • [5] Effective PSCCH Searching for 5G-NR V2X Sidelink Communications
    Magueta, Roberto
    Domingues, Joao
    Silva, Adao
    Marques, Paulo
    ELECTRONICS, 2021, 10 (22)
  • [6] Bistatic Vehicular Radar with 5G-NR signals
    Nataraja, Nikhil K.
    Sharma, Sudhanshu
    Ali, Kamran
    Bai, Fan
    Molisch, Andreas F.
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5605 - 5610
  • [7] Spectrum sharing for LTE and 5G-NR coexistence
    Sherif Adeshina Busari
    Noélia Correia
    Firooz B. Saghezchi
    Shahid Mumtaz
    Jonathan Rodriguez
    Telecommunication Systems, 2024, 85 : 649 - 664
  • [8] Partial CRC-aided decoding of 5G-NR short codes using reliability information
    Ming Jiang
    Zhengyi Li
    Xiao Yang
    Chunming Zhao
    Science China Information Sciences, 2019, 62
  • [9] Artificial intelligence enabled 5G-NR optimisation
    Sharma, Nidhi
    Ahlawat, Priyanka
    Aggarwal, Rajesh Kumar
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2023, 42 (01) : 41 - 51
  • [10] Impact of Imperfect Channel Estimation on 5G-NR
    Tunali, Aysegul Ilay
    Cirpan, Hakan Ali
    2021 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (IEEE BLACKSEACOM), 2021, : 89 - 94