Hyper-Kahler geometry via dualization

被引:0
|
作者
Burdik, C.
Krivonos, S.
Shcherbakov, A.
机构
[1] Czech Tech Univ, Dept Math, Prague 12000 2, Czech Republic
[2] JINR, Bogoliubov Lab Theoret Phys, Dubna, Russia
关键词
hyper-Kahler geometry; supersymmetry; dualization;
D O I
10.1007/s10582-006-0408-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a method of construction of sigma-models with target space geometries different from conformally flat ones. The method is based on treating the constancy of a coupling constant as a dynamical constraint following as an equation of motion. In this way we build N = 8 supersymmetric four-dimensional sigma-models in d = 1 with hyper-Kahler target space possessing one isometry, which commutes with supersymmetry.
引用
收藏
页码:1099 / 1103
页数:5
相关论文
共 50 条
  • [1] Hyper-Kahler geometry and dualization
    Bellucci, S
    Krivonos, S
    Shcherbakov, A
    PHYSICAL REVIEW D, 2006, 73 (08):
  • [2] CALIBRATIONS IN HYPER-KAHLER GEOMETRY
    Grantcharov, Gueo
    Verbitsky, Misha
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (02)
  • [3] Generalized hyper-Kahler geometry and supersymmetry
    Bredthauer, Andreas
    NUCLEAR PHYSICS B, 2007, 773 (03) : 172 - 183
  • [4] Hyper-Kahler fourfolds and Grassmann geometry
    Debarre, Olivier
    Voisin, Claire
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 649 : 63 - 87
  • [5] Geometry of hyper-Kahler connections with torsion
    Grantcharov, G
    Poon, YS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (01) : 19 - 37
  • [6] Instanton strings and hyper-Kahler geometry
    Dijkgraaf, R
    NUCLEAR PHYSICS B, 1999, 543 (03) : 545 - 571
  • [7] Topics in Hyper-Kahler Geometry Foreword
    Debarre, Olivier
    Huybrechts, Daniel
    Macri, Emanuele
    Voisin, Claire
    Tomarelli, Franco
    Stellari, Paolo
    MILAN JOURNAL OF MATHEMATICS, 2022, 90 (02) : 303 - 304
  • [8] A SURVEY ON HYPER-KAHLER WITH TORSION GEOMETRY
    Barberis, M. L.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2008, 49 (02): : 121 - 131
  • [9] Hypermultiplets, hyper-Kahler cones and quaternion-Kahler geometry
    de Wit, B
    Rocek, M
    Vandoren, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (02):
  • [10] The map between conformal hypercomplex/hyper-Kahler and quaternionic(-Kahler) geometry
    Bergshoeff, E
    Cucu, S
    de Wit, T
    Gheerardyn, J
    Vandoren, S
    Van Proeyen, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (02) : 411 - 457