The Chan-Vese Model With Elastica and Landmark Constraints for Image Segmentation

被引:2
|
作者
Song, Jintao [1 ]
Pan, Huizhu [2 ]
Liu, Wanquan [2 ]
Xu, Zisen [3 ]
Pan, Zhenkuan [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
[2] Curtin Univ, Sch Elect Engn Math Sci & Comp, Perth, WA 6102, Australia
[3] Qingdao Univ, Affiliated Hosp, Qingdao 266003, Peoples R China
关键词
Image segmentation; Chan-Vese model; elastica; landmarks; variational level set method; ADMM method;
D O I
10.1109/ACCESS.2020.3047848
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to completely separate objects with large sections of occluded boundaries in an image, we devise a new variational level set model for image segmentation combining the Chan-Vese model with elastica and landmark constraints. For computational efficiency, we design its Augmented Lagrangian Method (ALM) or Alternating Direction Method of Multiplier (ADMM) method by introducing some auxiliary variables, Lagrange multipliers, and penalty parameters. In each loop of alternating iterative optimization, the sub-problems of minimization can be easily solved via the Gauss-Seidel iterative method and generalized soft thresholding formulas with projection, respectively. Numerical experiments show that the proposed model can not only recover larger broken boundaries but can also improve segmentation efficiency, as well as decrease the dependence of segmentation on parameter tuning and initialization.
引用
收藏
页码:3508 / 3516
页数:9
相关论文
共 50 条
  • [1] An Improved Chan-Vese Model for Image Segmentation
    Shi, Yunqiu
    Zhao, Ji
    Yin, Minmin
    INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING BIOMEDICAL ENGINEERING, AND INFORMATICS (SPBEI 2013), 2014, : 67 - 74
  • [2] Chan-Vese model image segmentation with neighborhood information
    Yang, Mingyu
    Ding, Huan
    Zhao, Bo
    Zhang, Wensheng
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2011, 23 (03): : 413 - 418
  • [3] An efficient local Chan-Vese model for image segmentation
    Wang, Xiao-Feng
    Huang, De-Shuang
    Xu, Huan
    PATTERN RECOGNITION, 2010, 43 (03) : 603 - 618
  • [4] Chan-Vese Reformulation for Selective Image Segmentation
    Roberts, Michael
    Spencer, Jack
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2019, 61 (08) : 1173 - 1196
  • [5] Chan-Vese Segmentation
    Getreuer, Pascal
    IMAGE PROCESSING ON LINE, 2012, 2 : 214 - 224
  • [6] Topography Image Segmentation Based on Improved Chan-Vese Model
    ZHAO Min-rong
    ZHANG Xi-wen
    JIANG Juan-na
    Computer Aided Drafting,Design and Manufacturing, 2013, (02) : 13 - 16
  • [7] Completely Convex Formulation of the Chan-Vese Image Segmentation Model
    Ethan S. Brown
    Tony F. Chan
    Xavier Bresson
    International Journal of Computer Vision, 2012, 98 : 103 - 121
  • [8] Generalized Chan-Vese Model for Image Segmentation with Multiple Regions
    Dang Tran Vu
    Tran Thi Thu Ha
    Song, Min Gyu
    Kim, Jin Young
    Choi, Seung Ho
    Chaudhry, Asmatullah
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2013, 10 (01): : 1889 - 1895
  • [9] Completely Convex Formulation of the Chan-Vese Image Segmentation Model
    Brown, Ethan S.
    Chan, Tony F.
    Bresson, Xavier
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 98 (01) : 103 - 121
  • [10] Image Segmentation based on Geodesic aided Chan-Vese Model
    Thi-Thao Tran
    Van-Truong Pham
    Chiu, Yun-Jen
    Shyu, Kuo-Kai
    PROCEEDINGS 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, (ICCSIT 2010), VOL 1, 2010, : 315 - 317