Distance Verification for Classical and Quantum LDPC Codes

被引:9
|
作者
Dumer, Ilya [1 ]
Kovalev, Alexey A. [2 ]
Pryadko, Leonid P. [3 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[2] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[3] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
Distance verification; quantum stabilizer codes; LDPC codes; erasure correction; list decoding; PARITY-CHECK CODES; MINIMUM DISTANCE; ERROR-CORRECTION; DISTRIBUTIONS; ENSEMBLES; CAPACITY;
D O I
10.1109/TIT.2017.2690381
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The techniques of distance verification known for general linear codes are first applied to the quantum stabilizer codes. Then, these techniques are considered for classical and quantum (stabilizer) low-density-parity-check (LDPC) codes. New complexity bounds for distance verification with provable performance are derived using the average weight spectra of the ensembles of LDPC codes. These bounds are expressed in terms of the erasure-correcting capacity of the corresponding ensemble. We also present a new irreducible-cluster technique that can be applied to any LDPC code and takes advantage of parity-checks' sparsity for both the classical and quantum LDPC codes. This technique reduces complexity exponents of all existing deterministic techniques designed for generic stabilizer codes with small relative distances, which also include all known families of the quantum stabilizer LDPC codes.
引用
收藏
页码:4675 / 4686
页数:12
相关论文
共 50 条
  • [1] Distance verification for LDPC codes
    Dumer, Ilya
    Kovalev, Alexey A.
    Pryadko, Leonid P.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2529 - 2533
  • [2] A Note on the Minimum Distance of Quantum LDPC Codes
    Delfosse, Nicolas
    Li, Zhentao
    Thomasse, Stephan
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PT II, 2014, 8635 : 239 - 250
  • [3] Quantum LDPC Codes With Almost Linear Minimum Distance
    Panteleev, Pavel
    Kalachev, Gleb
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 213 - 229
  • [4] Asymptotically Good Quantum and Locally Testable Classical LDPC Codes
    Panteleev, Pavel
    Kalachev, Gleb
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 375 - 388
  • [5] On the minimum distance of array codes as LDPC codes
    Yang, KC
    Helleseth, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (12) : 3268 - 3271
  • [6] On the free distance of LDPC convolutional codes
    Sridharan, A
    Truhachev, D
    Lentmaier, M
    Costello, DJ
    Zigangirov, KS
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 311 - 311
  • [7] Distance properties of irregular LDPC codes
    Lehmann, F
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 85 - 85
  • [8] On the minimum distance of generalized LDPC codes
    Otmani, Ayoub
    Tillich, Jean-Pierre
    Andriyanova, Iryna
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 751 - +
  • [9] Asymmetric Quantum LDPC Codes
    Sarvepalli, Pradeep Kiran
    Roetteler, Martin
    Klappenecker, Andreas
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 305 - +
  • [10] Distance bounds for an ensemble of LDPC convolutional codes
    Sridharan, Arvind
    Truhachev, Dmitri
    Lentmaier, Michael
    Costello, Daniel J., Jr.
    Zigangirov, Kamil Sh.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (12) : 4537 - 4555