Optimizing kernel methods for Poisson integrals on a uniform grid

被引:6
|
作者
Gabay, D. [1 ]
Boag, A. [1 ]
Natan, A. [1 ,2 ]
机构
[1] Tel Aviv Univ, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-69978 Tel Aviv, Israel
关键词
Poisson solver; Density-Functional-Theory; Electrostatic potential; Ab-initio; MULTIRESOLUTION QUANTUM-CHEMISTRY; DIFFERENCE-PSEUDOPOTENTIAL METHOD; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-FUNCTIONAL THEORY; HARTREE-FOCK; REAL-SPACE; ALGORITHM; EQUATION; SOLVERS;
D O I
10.1016/j.cpc.2017.01.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We analyze the error and error propagation in the calculation of the Poisson integral on a uniform grid within Density Functional Theory (DFT) real-space calculations. We suggest and examine several schemes for near neighbors' interaction correction for the Green's function kernel to improve the accuracy. Finally, we demonstrate the effect of the different kernels on DFT eigenvalues and Hartree energy accuracy in systems such as C-60 and C40H82. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条