Approximate Bayesian inference for simulation and optimization

被引:5
|
作者
Ryzhov, Ilya O. [1 ]
机构
[1] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
关键词
Optimal learning; Stochastic optimization; Bayesian statistics; Approximate Bayesian inference;
D O I
10.1007/978-3-319-23699-5_1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an overview of approximate Bayesian methods for sequential learning in problems where conjugate Bayesian priors are unsuitable or unavailable. Such problems have numerous applications in simulation optimization, revenue management, e-commerce, and the design of competitive events. We discuss two important computational strategies for learning in such applications, and illustrate each strategy with multiple examples from the recent literature. We also briefly describe conjugate Bayesian models for comparison, and remark on the theoretical challenges of approximate models.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Approximate Bayesian Inference
    Alquier, Pierre
    ENTROPY, 2020, 22 (11)
  • [2] Calibrated Approximate Bayesian Inference
    Xing, Hanwen
    Nicholls, Geoff K.
    Lee, Jeong Eun
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [3] Approximate Decentralized Bayesian Inference
    Campbell, Trevor
    How, Jonathan P.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 102 - 111
  • [4] Approximate Bayesian inference for quantiles
    Dunson, DB
    Taylor, JA
    JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (03) : 385 - 400
  • [5] Robust approximate Bayesian inference
    Ruli, Erlis
    Sartori, Nicola
    Ventura, Laura
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 : 10 - 22
  • [6] Model-based Policy Optimization under Approximate Bayesian Inference
    Wang, Chaoqi
    Chen, Yuxin
    Murphy, Kevin
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [7] Approximate Bayesian Computation by Subset Simulation for Parameter Inference of Dynamical Models
    Vakilzadeh, Majid K.
    Huang, Yong
    Beck, James L.
    Abrahamsson, Thomas
    MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2016, : 37 - 50
  • [8] Distortion estimates for approximate Bayesian inference
    Xing, Hanwen
    Nicholls, Geoff
    Lee, Jeong Eun
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 1208 - 1217
  • [9] Approximate Bayesian Inference for Survival Models
    Martino, Sara
    Akerkar, Rupali
    Rue, Havard
    SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (03) : 514 - 528
  • [10] Approximate algorithm for Bayesian network inference
    Han Wei
    Ji Qiong
    Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 1176 - 1180