Ehrenfest-time-dependent excitation gap in a chaotic Andreev billiard

被引:20
|
作者
Adagideli, I [1 ]
Beenakker, CWJ [1 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
关键词
D O I
10.1103/PhysRevLett.89.237002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A semiclassical theory is developed for the appearance of an excitation gap in a ballistic chaotic cavity connected by a point contact to a superconductor. Diffraction at the point contact is a singular perturbation in the limit (h) over bar -->0, which opens up a gap E-gap in the excitation spectrum. The time scale (h) over bar /E(gap)proportional toalpha(-1)lnh (with alpha the Lyapunov exponent) is the Ehrenfest time, the characteristic time scale of quantum chaos.
引用
收藏
页码:1 / 237002
页数:4
相关论文
共 50 条
  • [1] Spectrum of the Andreev billiard and giant fluctuations of the Ehrenfest time
    Silvestrov, P. G.
    PHYSICAL REVIEW LETTERS, 2006, 97 (06)
  • [2] Ehrenfest-time-dependent suppression of weak localization
    Adagideli, I
    PHYSICAL REVIEW B, 2003, 68 (23)
  • [3] A quantum theory for the excitation spectrum of a rectangular Andreev billiard
    Espinoza Ortiz, J. S.
    Lagos, R. E.
    Belich, H.
    Amorim, L. S.
    Eleuterio, F. H. S.
    Orlando, M. T. D.
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574
  • [4] Chaotic motion and suppression of commensurability effects in an Andreev antidot billiard
    Eroms, J
    Tolkiehn, M
    Weiss, D
    Rössler, U
    De Boeck, J
    Borghs, S
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4): : 918 - 921
  • [5] Decreasing excitation gap in Andreev billiards by disorder scattering
    Libisch, F.
    Moeller, J.
    Rotter, S.
    Vavilov, M. G.
    Burgdoerfer, J.
    EPL, 2008, 82 (04)
  • [6] Time-delay matrix, midgap spectral peak, and thermopower of an Andreev billiard
    Marciani, M.
    Brouwer, P. W.
    Beenakker, C. W. J.
    PHYSICAL REVIEW B, 2014, 90 (04)
  • [7] Ehrenfest Time at the Transition from Integrable Motion to Chaotic Motion
    Zhao, Chuan
    Wu, Biao
    CHINESE PHYSICS LETTERS, 2021, 38 (03)
  • [8] Time-Dependent Circular Billiard
    Howard, J. E.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [9] Ehrenfest Time at the Transition from Integrable Motion to Chaotic Motion
    赵川
    吴飙
    Chinese Physics Letters, 2021, 38 (03) : 51 - 54
  • [10] Time-dependent Andreev reflection
    Averin, Dmitri, V
    Wang, Gongqi
    Vasenko, Andrey S.
    PHYSICAL REVIEW B, 2020, 102 (14)