A posteriori error estimates for the Fokker-Planck and Fermi pencil beam equations

被引:12
|
作者
Asadzadeh, M [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
关键词
D O I
10.1142/S0218202500000380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a posteriori error estimates for a finite element method for steady-state, energy dependent, Fokker-Planck and Fermi pencil beam equations in two space dimensions and with a forward-peaked scattering (i.e. with velocities varying within the right unit semi-circle). Our estimates are based on a transversal symmetry assumption, together with a strong stability estimate for an associated dual problem combined with the Galerkin orthogonality of the finite element method.
引用
收藏
页码:737 / 769
页数:33
相关论文
共 50 条
  • [1] On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport
    Borgers, C
    Larsen, EW
    MEDICAL PHYSICS, 1996, 23 (10) : 1749 - 1759
  • [2] PENCIL-BEAM APPROXIMATION OF FRACTIONAL FOKKER-PLANCK
    Bal, Guillaume
    Palacios, Benjamin
    KINETIC AND RELATED MODELS, 2021, 14 (05) : 767 - 817
  • [3] PENCIL-BEAM APPROXIMATION OF STATIONARY FOKKER-PLANCK
    Bal, Guillaume
    Palacios, Benjamin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) : 3487 - 3519
  • [4] Quantitative stability estimates for Fokker-Planck equations
    Li, Huaiqian
    Luo, Dejun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 122 : 125 - 163
  • [5] Geometric Fokker-Planck equations II : maximal hypoelliptic estimates
    Lebeau, Gilles
    ANNALES DE L INSTITUT FOURIER, 2007, 57 (04) : 1285 - 1314
  • [6] INTEGRAL IDENTITY AND MEASURE ESTIMATES FOR STATIONARY FOKKER-PLANCK EQUATIONS
    Huang, Wen
    Ji, Min
    Liu, Zhenxin
    Yi, Yingfei
    ANNALS OF PROBABILITY, 2015, 43 (04): : 1712 - 1730
  • [7] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [8] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [9] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [10] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530