Interplay of yeast global transcriptional regulators Ssn6p-Tup1p and Swi-Snf and their effect on chromatin structure

被引:72
作者
Gavin, IM [1 ]
Simpson, RT [1 ]
机构
[1] PENN STATE UNIV, DEPT BIOCHEM & MOL BIOL, UNIVERSITY PK, PA 16802 USA
关键词
chromatin; nucleosomes; Ssn6p(Cyc8p); Tup1p; Swi-Snf; transcription;
D O I
10.1093/emboj/16.20.6263
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional regulation in yeast involves a number of general trans-acting factors affecting chromatin structure. The Swi-Snf complex is required for expression of a large number of genes and has the ability to remodel chromatin in vitro, The Ssn6p-Tup1p repressor complex may be involved in chromatin organization through the interaction with pathway-specific DNA-binding proteins. To study the interplay of these factors and their effect on chromatin we have analyzed SUC2 chromatin structure in wild-type cells and in strains bearing combinations of ssn6/tup1 and swi1 mutations. We have mapped nucleosome positioning of the repressed gene in wild-type cells using primer extension methodology, allowing base pair resolution, and have analyzed details of chromatin remodeling in the derepressed state. In ssn6 or tup1 mutants under repressing conditions the observed changes in SUC2 chromatin structure may be suppressed by the swi1 mutation, suggesting that Ssn6p-Tup1p is not required for the establishment of nucleosome positioning at the SUC2 promoter, Our data indicate the involvement of chromatin remodeling factors distinct from the Swi-Snf complex in SUC2 transcriptional regulation and suggest that Swi-Snf may antagonize Ssn6p-Tup1p by controlling remodeling activity. We also show that a relatively high level of SUC2 transcription can coexist with positioned nucleosomes.
引用
收藏
页码:6263 / 6271
页数:9
相关论文
共 62 条
[1]  
[Anonymous], METHOD ENZYMOL
[2]   THE ROX1 REPRESSOR OF THE SACCHAROMYCES-CEREVISIAE HYPOXIC GENES IS A SPECIFIC DNA-BINDING PROTEIN WITH A HIGH-MOBILITY-GROUP MOTIF [J].
BALASUBRAMANIAN, B ;
LOWRY, CV ;
ZITOMER, RS .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (10) :6071-6078
[3]   Evidence that Spt6p controls chromatin structure by a direct interaction with histones [J].
Bortvin, A ;
Winston, F .
SCIENCE, 1996, 272 (5267) :1473-1476
[4]   2 DIFFERENTIALLY REGULATED MESSENGER-RNAS WITH DIFFERENT 5' ENDS ENCODE SECRETED AND INTRACELLULAR FORMS OF YEAST INVERTASE [J].
CARLSON, M ;
BOTSTEIN, D .
CELL, 1982, 28 (01) :145-154
[5]   THE SECRETED FORM OF INVERTASE IN SACCHAROMYCES-CEREVISIAE IS SYNTHESIZED FROM MESSENGER-RNA ENCODING A SIGNAL SEQUENCE [J].
CARLSON, M ;
TAUSSIG, R ;
KUSTU, S ;
BOTSTEIN, D .
MOLECULAR AND CELLULAR BIOLOGY, 1983, 3 (03) :439-447
[6]   Genetic analysis of glucose regulation in Saccharomyces cerevisiae: Control of transcription versus mRNA turnover [J].
Cereghino, GP ;
Scheffler, IE .
EMBO JOURNAL, 1996, 15 (02) :363-374
[7]   GENOMIC SEQUENCING [J].
CHURCH, GM ;
GILBERT, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :1991-1995
[8]   THE GLOBAL TRANSCRIPTIONAL REGULATORS, SSN6 AND TUP1, PLAY DISTINCT ROLES IN THE ESTABLISHMENT OF A REPRESSIVE CHROMATIN STRUCTURE [J].
COOPER, JP ;
ROTH, SY ;
SIMPSON, RT .
GENES & DEVELOPMENT, 1994, 8 (12) :1400-1410
[9]   STIMULATION OF GAL4 DERIVATIVE BINDING TO NUCLEOSOMAL DNA BY THE YEAST SWI/SNF COMPLEX [J].
COTE, J ;
QUINN, J ;
WORKMAN, JL ;
PETERSON, CL .
SCIENCE, 1994, 265 (5168) :53-60
[10]   Chromatin and transcription [J].
Edmondson, DG ;
Roth, SY .
FASEB JOURNAL, 1996, 10 (10) :1173-1182