Low-dimensional dynamics of structured random networks

被引:22
|
作者
Aljadeff, Johnatan [1 ,2 ]
Renfrew, David [3 ]
Vegue, Marina [4 ,5 ]
Sharpee, Tatyana O. [2 ]
机构
[1] Univ Chicago, Dept Neurobiol, Chicago, IL 60637 USA
[2] Salk Inst Biol Studies, Computat Neurobiol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[4] Ctr Recerca Matemat, Campus Bellaterra, Bellaterra, Spain
[5] Univ Politecn Cataluna, Dept Matemat, Barcelona, Spain
基金
美国国家科学基金会;
关键词
COMMUNITY FOOD WEBS; NEURAL-NETWORKS; STOCHASTIC-THEORY; MODEL; SPECIFICITY; SYSTEM; CHAOS;
D O I
10.1103/PhysRevE.93.022302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using a generalized random recurrent neural network model, and by extending our recently developed mean-field approach [J. Aljadeff, M. Stern, and T. Sharpee, Phys. Rev. Lett. 114, 088101 (2015)], we study the relationship between the network connectivity structure and its low-dimensional dynamics. Each connection in the network is a random number with mean 0 and variance that depends on pre- and postsynaptic neurons through a sufficiently smooth function g of their identities. We find that these networks undergo a phase transition from a silent to a chaotic state at a critical point we derive as a function of g. Above the critical point, although unit activation levels are chaotic, their autocorrelation functions are restricted to a low-dimensional subspace. This provides a direct link between the network's structure and some of its functional characteristics. We discuss example applications of the general results to neuroscience where we derive the support of the spectrum of connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we study the stability of the cascade model for food web structure.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Low-dimensional combinatorial dynamics
    Alsedà, L
    Llibre, J
    Misiurewicz, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (09): : 1687 - 1704
  • [2] Effects of Neural Heterogeneity on the Low-Dimensional Dynamics of Spiking Neural Networks
    Gast, Richard
    Solla, Sara A.
    Kennedy, Ann
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S68 - S68
  • [3] Effects of Neural Heterogeneity on the Low-Dimensional Dynamics of Spiking Neural Networks
    Gast, Richard
    Solla, Sara A.
    Kennedy, Ann
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S68 - S68
  • [4] Dynamics of low-dimensional dipolar systems
    Sun, JM
    Luo, WL
    PHYSICAL REVIEW E, 1997, 56 (04): : 3986 - 3992
  • [5] Dynamics of low-dimensional systems PREFACE
    Bernasconi, M.
    Miret-Artes, S.
    Toennies, J. P.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (10)
  • [6] Low-dimensional approximations of random vibration systems
    Wunderlich, R
    vom Scheidt, J
    Starkloff, HJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S651 - S652
  • [7] Low-dimensional controllability of brain networks
    Ben Messaoud, Remy
    Le Du, Vincent
    Bousfiha, Camile
    Corsi, Marie-Constance
    Gonzalez-Astudillo, Juliana
    Kaufmann, Brigitte Charlotte
    Venot, Tristan
    Couvy-Duchesne, Baptiste
    Migliaccio, Lara
    Rosso, Charlotte
    Bartolomeo, Paolo
    Chavez, Mario
    De Vico Fallani, Fabrizio
    PLOS COMPUTATIONAL BIOLOGY, 2025, 21 (01)
  • [8] Carrier Dynamics in Low-dimensional Perovskites
    Li, Mingjie
    Bhaumik, Saikat
    Mhaisalkar, Subodh
    Mathews, Nripan
    Sum, Tze Chien
    7TH IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE (INEC) 2016, 2016,
  • [9] Nonequilibrium dynamics in low-dimensional systems
    Evans, MR
    Blythe, RA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 313 (1-2) : 110 - 152
  • [10] Synchronization and peak-to-peak dynamics in networks of low-dimensional chaotic oscillators
    Maggi, Stefano
    Rinaldi, Sergio
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3631 - 3642