Bayesian networks;
Recursive factorizations;
Compilation of graphical models;
INFERENCE;
D O I:
10.1016/j.ijar.2009.04.010
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
An elimination tree is a form of recursive factorization for Bayesian networks. Elimination trees can be used as the basis for a practical implementation of Bayesian network inference via conditioning graphs. The time complexity for inference in elimination trees has been shown to be O(n exp(d)), where d is the height of the elimination tree. In this paper, we demonstrate two new heuristics for building small elimination trees. We also demonstrate a simple technique for deriving elimination trees from Darwiche et al.'s dtrees, and vice versa. We show empirically that our heuristics, combined with a constructive process for building elimination trees, produces the smaller elimination trees than previous methods. (C) 2009 Elsevier Inc. All rights reserved.