Superconvergence of H1-Galerkin mixed finite element methods for parabolic problems

被引:9
|
作者
Tripathy, Madhusmita [1 ]
Sinha, Rajen K. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, Assam, India
关键词
parabolic problem; H1-Galerkin mixed finite element method; superconvergence; error estimates; ELLIPTIC PROBLEMS; EQUATIONS;
D O I
10.1080/00036810903208163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the semidiscrete H1-Galerkin mixed finite element method for parabolic problems over rectangular partitions. The well-known optimal order error estimate in the L2-norm for the flux is of order O(hk+1) (SIAM J. Numer. Anal. 35 (2), (1998), pp. 712-727), where k epsilon 1 is the order of the approximating polynomials employed in the Raviart-Thomas element. We derive a superconvergence estimate of order O(hk+3) between the H1-Galerkin mixed finite element approximation and an appropriately defined local projection of the flux variable when k epsilon 1. A the new approximate solution for the flux with superconvergence of order O(hk+3) is realized via a postprocessing technique using local projection methods.
引用
收藏
页码:1213 / 1231
页数:19
相关论文
共 50 条