Convergence analysis of a two-point gradient method for nonlinear ill-posed problems

被引:47
|
作者
Hubmer, Simon [1 ]
Ramlau, Ronny [2 ,3 ]
机构
[1] Johannes Kepler Univ Linz, Doctoral Program Computat Math, Altenbergerstr 69, A-4040 Linz, Austria
[2] Johannes Kepler Univ Linz, Inst Ind Math, Altenbergerstr 69, A-4040 Linz, Austria
[3] Johann Radon Inst Linz, Altenbergerstr 69, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
two-point gradient method; Nesterov acceleration scheme; Landweber iteration; steepest descent; minimal error; regularization method; SPECT; LANDWEBER ITERATION; ALGORITHM;
D O I
10.1088/1361-6420/aa7ac7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We perform a convergence analysis of a two-point gradient method which is based on Landweber iteration and on Nesterov's acceleration scheme. Additionally, we show the usefulness of this method via two numerical example problems based on a nonlinear Hammerstein operator and on the nonlinear inverse problem of single photon emission computed tomography.
引用
收藏
页数:30
相关论文
共 50 条