Inference for the poly-Weibull model

被引:19
|
作者
Davison, AC [1 ]
Louzada-Neto, F
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-1015 Lausanne, Switzerland
[2] Univ Fed Sao Carlos, BR-13560 Sao Carlos, SP, Brazil
关键词
Bayesian bootstrap; bi-Weibull distribution; competing risks; identifiability; Laplace approximation; likelihood; sampling-importance resampling;
D O I
10.1111/1467-9884.00229
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider inference for the poly-Weibull model, which arises in competing risk scenarios when the risks have independent Weibull distributions and it is not known which is responsible for the failure. Real and generated data sets illustrate our approaches to inference, which in addition to standard likelihood methods include Bayesian inference by Laplace's method for analytical approximation of integrals and sampling-importance resampling.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 50 条
  • [1] Survival extrapolation using the poly-Weibull model
    Demiris, Nikolaos
    Lunn, David
    Sharples, Linda D.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (02) : 287 - 301
  • [2] On the non-identifiability problem arising on the poly-Weibull model
    Louzada-Neto, F
    Andrade, CS
    Almeida, FRZ
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2004, 33 (03) : 541 - 552
  • [3] Maximum likelihood estimation for the poly-Weibull distribution
    Freels, Jason K.
    Timme, Daniel A.
    Pignatiello, Joseph J.
    Warr, Richard L.
    Hill, Raymond R.
    QUALITY ENGINEERING, 2019, 31 (04) : 545 - 552
  • [4] Application of poly-Weibull regression model in analysis with competing causes of failure
    School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
    不详
    Xitong Fangzhen Xuebao, 2006, SUPPL. 2 (199-202):
  • [5] BAYESIAN-ANALYSIS FOR THE POLY-WEIBULL DISTRIBUTION
    BERGER, JO
    SUN, DC
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) : 1412 - 1418
  • [6] Empirical Bayes inference for the Weibull model
    M. Maswadah
    Computational Statistics, 2013, 28 : 2849 - 2859
  • [7] Empirical Bayes inference for the Weibull model
    Maswadah, M.
    COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2849 - 2859
  • [8] Linear Bayesian Inference for Accelerated Weibull Model
    Mazzuchi T.A.
    Soyer R.
    Vopatek A.L.
    Lifetime Data Analysis, 1997, 3 (1) : 63 - 75
  • [10] Software for Weibull Inference
    McCool, John I.
    QUALITY ENGINEERING, 2011, 23 (03) : 253 - 264