A grid enabled Monte Carlo Hyperspectral Synthetic Image Remote Sensing Model (GRID-MCHSIM) for coastal water quality algorithm

被引:6
|
作者
Chiang, Gen-Tao [1 ,2 ]
Dove, Martin [1 ,2 ]
Ballard, Stuart [1 ,2 ]
Bostater, Charles [3 ,4 ]
Frame, Ian [1 ,2 ]
机构
[1] Univ Cambridge, Natl Inst Environm eSci, Downing Site, Cambridge CB2 3EQ, England
[2] Univ Cambridge, Dept Earth Sci, Cambridge, England
[3] Florida Tech, Marine Environm Opt Lab, Melbourne, FL USA
[4] Florida Tech, Remote Sensing Ctr, Coll Engn, Melbourne, FL USA
来源
REMOTE SENSING OF THE OCEAN, SEA ICE, AND LARGE WATER REGIONS 2006 | 2006年 / 6360卷
关键词
environmental eScience; eScience; GRID; cyberinfrastructure; hyperspectral remote sensing; coastal water quality; synthetic image generation; Monte Carlo method;
D O I
10.1117/12.689967
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Previous studies indicate that parallel computing for hyperspectral remote sensing image generation is feasible. However, due to the limitation of computing ability within single cluster, one can only generate three bands and a 1000*1000 pixels image in a reasonable time. In this paper, we discuss the capability of using Grid computing where the so-called eScience or cyberinfrastructure is utilized to integrate distributed computing resources to act as a single virtual computer with huge computational abilities and storage spaces. The technique demonstrated in this paper demonstrates the feasibility of a Grid-Enabled Monte Carlo Hyperspectral Synthetic Image Remote Sensing Model (GRID-MCHSIM) for coastal water quality algorithm.
引用
收藏
页数:11
相关论文
共 19 条
  • [1] Comparison between an analytical and Monte Carlo hyperspectral reflectance model for coastal remote sensing
    Charles, BR
    Manuel, G
    REMOTE SENSING OF THE OCEAN AND SEA ICE 2001, 2002, 4544 : 108 - 122
  • [2] EVALUATION OF A HYPERSPECTRAL OPTICAL-MONTE CARLO REMOTE SENSING MODEL IN A WATER TANK STUDY
    Garg, V.
    Chaubey, I.
    Singh, S.
    TRANSACTIONS OF THE ASABE, 2009, 52 (03) : 759 - 769
  • [3] Water quality model using hyperspectral remote sensing
    Lopes, Fernando B.
    Barbosa, Claudio C. F.
    Novo, Evlyn M. L. de M.
    de Andrade, Eunice M.
    Chaves, Luiz C. G.
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2014, 18 : S13 - S19
  • [4] Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality
    Brando, VE
    Dekker, AG
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (06): : 1378 - 1387
  • [5] GPGC: a Grid-enabled parallel algorithm of geometric correction for remote-sensing applications
    Zhou, Haifang
    Yang, Xujun
    Liu, Hengzhu
    Tang, Yu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2006, 18 (14): : 1775 - 1785
  • [6] Remote sensing of selected water-quality indicators with the hyperspectral imager for the coastal ocean (HICO) sensor
    Keith, Darryl J.
    Schaeffer, Blake A.
    Lunetta, Ross S.
    Gould, Richard W., Jr.
    Rocha, Kenneth
    Cobb, Donald J.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (09) : 2927 - 2962
  • [7] Hyperspectral remote sensing for estimating coastal water quality: Case study on coast of Black Sea, Romania
    Ghezehegn, S. G.
    Steef, Peters
    Hommersom, Annelies
    Nils, De Reus
    Culcea, Oana
    Krommendijk, Bram
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVI, 2014, 9239
  • [8] Synthetic image generation of shallow waters using a parallelized hyperspectral Monte Carlo & analytical radiative transfer model
    Bostater, CR
    Chiang, GT
    Huddleston, L
    Gimond, M
    REMOTE SENSING OF THE OCEAN AND SEA ICE 2002, 2002, 4880 : 102 - 116
  • [9] A Fine-Grained Authentication Model Based on Perceptual Hashing and Grid Descriptor for Remote Sensing Image
    Ding, Kaimeng
    Wang, Yuhai
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES FOR RAIL TRANSPORTATION (EITRT2013), VOL II, 2014, 288 : 423 - 430
  • [10] A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images
    Su, Yuan-Fong
    Liou, Jun-Jih
    Hou, Ju-Chen
    Hung, Wei-Chun
    Hsu, Shu-Mei
    Lien, Yi-Ting
    Su, Ming-Daw
    Cheng, Ke-Sheng
    Wang, Yeng-Fung
    SENSORS, 2008, 8 (10): : 6321 - 6339