Adaptive-Size Dictionary Learning Using Information Theoretic Criteria

被引:6
|
作者
Dumitrescu, Bogdan [1 ]
Giurcaneanu, Ciprian Doru [2 ]
机构
[1] Univ Politehn Bucuresti, Dept Automat Control & Comp, 313 Spl Independentei, Bucharest 060042, Romania
[2] Univ Auckland, Dept Stat, Auckland 1142, New Zealand
关键词
dictionary learning; sparse representation; information theoretic criteria; dictionary size; SELECTION; DESIGN; SVD;
D O I
10.3390/a12090178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finding the size of the dictionary is an open issue in dictionary learning (DL). We propose an algorithm that adapts the size during the learning process by using Information Theoretic Criteria (ITC) specialized to the DL problem. The algorithm is built on top of Approximate K-SVD (AK-SVD) and periodically removes the less used atoms or adds new random atoms, based on ITC evaluations for a small number of candidate sub-dictionaries. Numerical experiments on synthetic data show that our algorithm not only finds the true size with very good accuracy, but is also able to improve the representation error in comparison with AK-SVD knowing the true size.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Adaptive-size dictionary learning using information theoretic criteria for image reconstruction from undersampled k-space data in low field magnetic resonance imaging
    Emmanuel Ahishakiye
    Martin Bastiaan Van Gijzen
    Julius Tumwiine
    Johnes Obungoloch
    BMC Medical Imaging, 20
  • [2] Adaptive-size dictionary learning using information theoretic criteria for image reconstruction from undersampled k-space data in low field magnetic resonance imaging
    Ahishakiye, Emmanuel
    Van Gijzen, Martin Bastiaan
    Tumwiine, Julius
    Obungoloch, Johnes
    BMC MEDICAL IMAGING, 2020, 20 (01)
  • [3] Size Adaptation of Separable Dictionary Learning with Information-Theoretic Criteria
    Baltoiu, Andra
    Dumitrescu, Bogdan
    2019 22ND INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS), 2019, : 7 - 11
  • [4] Information theoretic learning with adaptive kernels
    Singh, Abhishek
    Principe, Jose C.
    SIGNAL PROCESSING, 2011, 91 (02) : 203 - 213
  • [5] Information-Theoretic Dictionary Learning for Image Classification
    Qiu, Qiang
    Patel, Vishal M.
    Chellappa, Rama
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (11) : 2173 - 2184
  • [6] Learning from Examples with Information Theoretic Criteria
    Jose C. Principe
    Dongxin Xu
    Qun Zhao
    John W. Fisher
    Journal of VLSI signal processing systems for signal, image and video technology, 2000, 26 : 61 - 77
  • [7] Learning from examples with information theoretic criteria
    Principe, JC
    Xu, DX
    Zhao, Q
    Fisher, JW
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2000, 26 (1-2): : 61 - 77
  • [8] Image segmentation using information theoretic criteria
    Hibbard, LS
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1639 - 1649
  • [9] ON IMAGE SEGMENTATION USING INFORMATION THEORETIC CRITERIA
    Aue, Alexander
    Lee, Thomas C. M.
    ANNALS OF STATISTICS, 2011, 39 (06): : 2912 - 2935
  • [10] Selection of classifiers using information-theoretic criteria
    Kang, HJ
    PATTERN RECOGNITION AND DATA MINING, PT 1, PROCEEDINGS, 2005, 3686 : 478 - 487