Schwinger action principle via linear quantum canonical transformations

被引:3
|
作者
Boudjema-Bouloudenine, M. [1 ]
Boudjedaa, T. [1 ]
Makhlouf, A. [1 ]
机构
[1] Univ Haute Alsace, Lab Math Informat & Applicat, Mulhouse, France
来源
EUROPEAN PHYSICAL JOURNAL C | 2006年 / 46卷 / 03期
关键词
D O I
10.1140/epjc/s2006-02515-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We have applied the Schwinger action principle to general one-dimensional (1D), time-dependent quadratic systems via linear quantum canonical transformations, which allowed us to simplify the problems to be solved by this method. We show that while using a suitable linear canonical transformation, we can considerably simplify the evaluation of the propagator of the studied system to that for a free particle. The efficiency and exactness of this method is verified in the case of the simple harmonic oscillator. This technique enables us to evaluate easily and immediately the propagator in some particular cases such as the damped harmonic oscillator, the harmonic oscillator with a time-dependent frequency, and the harmonic oscillator with time-dependent mass and frequency, and in this way the propagator of the forced damped harmonic oscillator is easily calculated without any approach.
引用
收藏
页码:807 / 816
页数:10
相关论文
共 50 条
  • [1] Schwinger action principle via linear quantum canonical transformations
    M. Boudjema-Bouloudenine
    T. Boudjedaa
    A. Makhlouf
    The European Physical Journal C - Particles and Fields, 2006, 46 : 807 - 816
  • [2] Schwinger quantum action principle
    de Melo, C. A. M.
    Pimentel, B. M.
    Ramirez, J. A.
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2013, 35 (04):
  • [3] Linear canonical transformations in quantum mechanics
    Bordner, AJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (07) : 3427 - 3434
  • [4] Linear Canonical Transformations in relativistic quantum physics
    Ranaivoson, Ravo Tokiniaina
    Andriambololona, Raoelina
    Rakotoson, Hanitriarivo
    Raboanary, Roland
    PHYSICA SCRIPTA, 2021, 96 (06)
  • [5] Linear canonical transformations and quantum phase: a unified canonical and algebraic approach
    Hakioglu, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (22): : 4111 - 4130
  • [6] The Schwinger action principle for classical systems
    Bermudez Manjarres, A. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (41)
  • [7] Quantum correspondence for linear canonical transformations on general Hamiltonian systems
    Yeon, KH
    Walls, DF
    Um, CI
    George, TF
    Pandey, LN
    PHYSICAL REVIEW A, 1998, 58 (03): : 1765 - 1774
  • [8] PARASTATISTICS FROM SCHWINGER ACTION PRINCIPLE
    BLOORE, FJ
    LOVELY, RM
    NUCLEAR PHYSICS B, 1972, B 49 (DEC1) : 392 - &
  • [9] Introducing supersymmetric quantum mechanics via point canonical transformations
    Gonzalez, Gabriel
    EUROPEAN JOURNAL OF PHYSICS, 2020, 41 (04)
  • [10] CANONICAL TRANSFORMATIONS WITHOUT HAMILTONS PRINCIPLE
    LUDFORD, GSS
    YANNITEL.DW
    AMERICAN JOURNAL OF PHYSICS, 1968, 36 (03) : 231 - &