Biderivations of the higher rank Witt algebra without anti-symmetric condition

被引:3
|
作者
Tang, Xiaomin [1 ,2 ]
Yang, Yu [1 ]
机构
[1] Heilongjiang Univ, Dept Math, Harbin 150080, Heilongjiang, Peoples R China
[2] Heilongjiang Univ, Heilongjiang Prov Key Lab Theory & Computat Compl, Harbin 150080, Heilongjiang, Peoples R China
来源
OPEN MATHEMATICS | 2018年 / 16卷
关键词
Biderivation; Higher rank Witt algebra; Anti-symmetric; Post-Lie algebra; LINEAR COMMUTING MAPS; LIE-ALGEBRA; WEIGHT MODULES; REPRESENTATIONS; TORUS; C);
D O I
10.1515/math-2018-0042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Witt algebra W-d of rank d(>= 1) is the derivation algebra of Laurent polynomial algebras in d commuting variables. In this paper, all biderivations of W-d without anti-symmetric condition are determined. As an applications, commutative post-Lie algebra structures on W-d are obtained. Our conclusions recover and generalize results in the related papers on low rank or anti-symmetric cases.
引用
收藏
页码:447 / 452
页数:6
相关论文
共 10 条