First- and second-order error estimates in Monte Carlo integration

被引:1
|
作者
Bakx, R. [1 ]
Kleiss, R. H. P. [1 ]
Versteegen, F. [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
关键词
Monte Carlo integration; Error estimates; Central limit theorem; Chan-Golub algorithm;
D O I
10.1016/j.cpc.2016.07.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In Monte Carlo integration an accurate and reliable determination of the numerical integration error is essential. We point out the need for an independent estimate of the error on this error, for which we present an unbiased estimator. In contrast to the usual (first-order) error estimator, this second-order estimator can be shown to be not necessarily positive in an actual Monte Carlo computation. We propose an alternative and indicate how this can be computed in linear time without risk of large rounding errors. In addition, we comment on the relatively very slow convergence of the second-order error estimate. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 50 条
  • [1] Integration of first- and second-order orientation
    Allen, HA
    Hess, RF
    Mansouri, B
    Dakin, SC
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (06) : 974 - 986
  • [2] On first- and second-order conditions for error bounds
    Huang, LR
    Ng, KF
    SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (04) : 1057 - 1073
  • [3] Representing both first- and second-order uncertainties by Monte Carlo simulation for groups of patients
    Halpern, EF
    Weinstein, MC
    Hunink, MGM
    Gazelle, GS
    MEDICAL DECISION MAKING, 2000, 20 (03) : 314 - 322
  • [4] First-order Reversal Curve Analysis of Kinetic Monte Carlo Simulations of First- and Second-order Phase Transitions
    Hamad, I. A.
    Robb, D.
    Rikvold, P. A.
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XIX, 2009, 123 : 89 - +
  • [5] EXACT FIRST- AND SECOND-ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE
    ROHDE, CA
    TALLIS, GM
    BIOMETRIKA, 1969, 56 (03) : 517 - &
  • [6] Consensus, error estimates and applications of first- and second-order consensus-based optimization algorithms
    Byeon, Junhyeok
    Ha, Seung-Yeal
    Hwang, Gyuyoung
    Ko, Dongnam
    Yoon, Jaeyoung
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2025, 35 (02): : 345 - 401
  • [7] Gaslighting, First- and Second-Order
    Catapang Podosky, Paul-Mikhail
    HYPATIA-A JOURNAL OF FEMINIST PHILOSOPHY, 2021, 36 (01): : 207 - 227
  • [8] Spatial integration within and between first- and second-order stimuli
    Summers, R.
    Baker, D. H.
    Meese, T.
    PERCEPTION, 2012, 41 : 223 - 223
  • [9] First-order or second-order kinetics? A Monte Carlo answer
    Tellinghuisen, J
    JOURNAL OF CHEMICAL EDUCATION, 2005, 82 (11) : 1709 - 1714
  • [10] UPDATING FIRST- AND SECOND-ORDER RELIABILITY ESTIMATES BY IMPORTANCE SAMPLING.
    Fujita, Munehisa
    Rackwitz, Ruediger
    Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1988, 9 (04): : 53 - 59