Remaining Useful Life Prediction of Rolling Element Bearings Using Supervised Machine Learning

被引:26
|
作者
Li, Xiaochuan [1 ]
Elasha, Faris [2 ]
Shanbr, Suliman [3 ]
Mba, David [1 ,4 ]
机构
[1] De Montfort Univ, Fac Comp Engn & Media, Leicester LE1 9BH, Leics, England
[2] Coventry Univ, Fac Engn Environm & Comp, Coventry CV1 2JH, W Midlands, England
[3] Cranfield Univ, Sch Water Energy & Environm, Dept Engn & Appl Sci, Cranfield MK43 0AL, Beds, England
[4] Univ Lagos, Dept Mech Engn, Lagos 100213, Nigeria
关键词
prognostics; vibration measurement; regression model; artificial neural network; rolling element bearing; remaining useful life; ACOUSTIC-EMISSION; VIBRATION; PROGNOSIS; SIGNALS;
D O I
10.3390/en12142705
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Components of rotating machines, such as shafts, bearings and gears are subject to performance degradation, which if left unattended could lead to failure or breakdown of the entire system. Analyzing condition monitoring data, implementing diagnostic techniques and using machinery prognostic algorithms will bring about accurate estimation of the remaining life and possible failures that may occur. This paper proposes a combination of two supervised machine learning techniques; namely, the regression model and multilayer artificial neural network model, to predict the remaining useful life of rolling element bearings. Root mean square and Kurtosis were analyzed to define the bearing failure stages. The proposed methodology was validated through two case studies involving vibration measurements of an operational wind turbine gearbox and a split cylindrical roller bearing in a test rig.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction of Rolling Bearings Using PSR, JADE, and Extreme Learning Machine
    Liu, Yongbin
    He, Bing
    Liu, Fang
    Lu, Siliang
    Zhao, Yilei
    Zhao, Jiwen
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [2] A probabilistic approach to remaining useful life prediction of rolling element bearings
    Prakash, Guru
    Narasimhan, Sriram
    Pandey, Mahesh D.
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2019, 18 (02): : 466 - 485
  • [3] Predicting the Remaining Useful Life of Rolling Element Bearings
    Jantunen, Erkki
    Hooghoudt, Jan-Otto
    Yang, Yi
    McKay, Mark
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 2035 - 2040
  • [4] Degradation Feature Selection for Remaining Useful Life Prediction of Rolling Element Bearings
    Zhang, Bin
    Zhang, Lijun
    Xu, Jinwu
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 547 - 554
  • [5] Prediction on the Remaining Useful Life of Rolling Bearings Using Ensemble DLSTM
    Jiang, Miao
    Xiang, Yang
    SHOCK AND VIBRATION, 2023, 2023
  • [6] Prediction of remaining useful life of wind turbine shaft bearings using machine learning
    Shaw J.
    Wu B.
    Journal of Marine Science and Technology (Taiwan), 2021, 29 (05): : 631 - 637
  • [7] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Liu, Jingna
    Hao, Rujiang
    Liu, Qiang
    Guo, Wenwu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1567 - 1578
  • [8] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Jingna Liu
    Rujiang Hao
    Qiang Liu
    Wenwu Guo
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1567 - 1578
  • [9] Just Another Attention Network for Remaining Useful Life Prediction of Rolling Element Bearings
    Huang, Gangjin
    Hua, Shungang
    Zhou, Qiang
    Li, Hongkun
    Zhang, Yuanliang
    IEEE ACCESS, 2020, 8 : 204144 - 204152
  • [10] Remaining Useful Life Prediction of Rolling Element Bearings Based on Unscented Kalman Filter
    Qi, Junyu
    Mauricio, Alexadre
    Sarrazin, Mathieu
    Janssens, Karl
    Gryllias, Konstantinos
    ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO 2018), 2019, 15 : 111 - 121