Fluid-Solid Coupling Parameter Identification of Underground Engineering Based on Particle Swarm Optimization

被引:0
|
作者
Jiang Annan [1 ]
Bao Chunyan [1 ]
机构
[1] Dalian Maritime Univ, Traff & Logist Coll, Dalian 116026, Liaoning, Peoples R China
关键词
underground engineering; fluid-solid coupling; parameter identification; particle swarm optimization; Fast Lagrangian Analysis of Continua(FLAC);
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In view of underground engineering fluid-solid coupling complexity and parameter uncertainty problem, we combine the particle swarm optimization whose order is simple and is with global optimization faculty with Fast Lagrangian Analysis of Continua software(FLAC), and then construct FLAC-PSO numerical simulation method of fluid-solid coupling parameter identification. The method starts from mechanical parameter and random value of seepage parameter of the underground engineering surrounding rock, takes the wall rock displacement and the discrepancy between numerical simulated and actual observed value of character lines or points as fitness value, carry out the evolution of elastic modulus and coefficient of permeability in reason by using particle swarm optimization iteration rule. it is seen from the calculation that such method is an ideal method of fluid-solid coupling parameter identification in underground engineering, as it converges quickly, and is with high identification accuracy.
引用
收藏
页码:670 / 675
页数:6
相关论文
共 50 条
  • [1] Formulation and numerical realization of anisotropic permeability coefficient for fluid-solid coupling in underground engineering
    Ding, Wenqi
    Li, Fengshu
    Shao, Zhili
    Qiao, Yafei
    GEOSHANGHAI 2024 INTERNATIONAL CONFERENCE, VOL 5, 2024, 1334
  • [2] Research of fluid-solid coupling in the ground engineering
    Liang, B.
    Sun, K.M.
    Xue, Q.
    Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban)/Journal of Liaoning Technical University (Natural Science Edition), 2001, 20 (02):
  • [3] Numerical Simulation of Fluid-Solid Coupling in Surrounding Rock and Parameter Optimization for Filling Mining
    Nan Shiqing
    Gao Qian
    Liu Zenghui
    ISMSSE 2011, 2011, 26
  • [4] Parameter identification of underwater glider based on particle swarm optimization
    Wang, Li-Ming
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONIC INFORMATION ENGINEERING (CEIE 2016), 2016, 116 : 109 - 114
  • [5] Parameter identification of induction motor based on particle swarm optimization
    Picardi, C.
    Rogano, N.
    2006 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, VOLS 1-3, 2006, : 968 - +
  • [6] Particle swarm optimization based parameter identification applied to PMSM
    Liu, Li
    Cartes, David A.
    Liu, Wenxin
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 3064 - 3069
  • [7] Particle Swarm Optimization Based Load Model Parameter Identification
    Kim, Young-Gon
    Song, Hwachang
    Kim, Hong Rae
    Lee, Byongjun
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [8] Parameter Identification of MR Damper Model Based on Particle Swarm Optimization
    Yang, Yonggang
    Ding, Youchuang
    Zhu, Shixing
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 555 - 563
  • [9] Parameter identification of dynamical systems based on improved particle swarm optimization
    Ye, Meiying
    INTELLIGENT CONTROL AND AUTOMATION, 2006, 344 : 351 - 360
  • [10] Parameter Identification of Train basic resistance Based on Particle Swarm Optimization
    Li Tianxiang
    Yang Hang
    Wang Chuanru
    Wang Qingyuan
    Sun Pengfei
    Feng Xiaoyun
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1572 - 1577